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Abstract In many practical situations, we need to reconstruct the dependence be-
tween quantities G and H based on several situations in which we know both G and H
values. Such problems are known as regression problems. Usually, this reconstruc-
tion is based on positive examples, when we know H – at least, with some accuracy.
However, in addition, we often also know some examples in which we have negative
information about H – e.g., we know that H does not belong to a certain interval. In
this paper, we show how such negative examples can be used to make the solution
to a regression problem more accurate.

1 Using Negative Examples in Regression: Formulation of the
Problem

What we do in this section. The main objective of this section is to motivate the
need for our research.

For this purpose, we review the well-known notions such as regression, machine
learning, classification, etc. – and while recalling these basic notions, we try our best
to explain how the usual motivation for these notions and related ideas naturally lead
to the need to consider negative examples.

What we want: a general description. From the practical viewpoint, in a rough
approximation, the main objective of science is to enable people to predict what will
happen in the world. (To be more precise, some people define the goal of the science
as discovering the laws of nature, with prediction as a result of it.)
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The main objective of engineering is to find out what changes we need to make
in the world to make it better. To select the appropriate changes, we need to be able
to predict how each possible change will affect the world.

Thus, in both cases, we need to be able, given the initial conditions G (which
include the information about the change), to predict the value of each quantity H
characterizing the future state.

Comment. In general, the quantity H can take all possible real values – or all the
values from some finite or interval interval. Such quantities are called continuous.

In some case, possible values of H are limited to some discrete set: e.g., electric
charges are all proportional to the elementary charge. The corresponding quantities
are called discrete. In this paper, we concentrate on the general case of continuous
quantities, but our ideas and formulas can be easily extended to the discrete cases as
well. For example, for discrete quantities, in the case of probabilistic uncertainty:

• instead of the probability density function (pdf), we can use its discrete analogue
– probabilities of different values, and

• instead of the integral of the pdf being equal to 1, we will have the sum of the
probabilities equal to 1.

Often, we do not know the dependence of H on G. In some cases – e.g., in celestial
mechanics – we know the equations (or even explicit formulas) that relate the avail-
able information G and the desired quantity H. In such cases, in principle, we have an
algorithm for predicting H.

In some situations, this algorithm may not be practical. For example, the fastest
we can reasonably reliably predict where the tornado will go in the next 15 minutes
is after several hours of computations on a high-performance computer – which
makes these computations useless. However, as computers get faster and faster, we
will eventually be able to make the corresponding computations practical.

In many other situations, however, we do not know how H depends on G. In such
situations, we need to determine this dependence based on the known examples(
G (:) , H (:)

)
of past situations, in which we know both G and H.

Comment.Of course, this knowledge comes from measurements, and measurements
are never absolutely accurate. So, in reality, instead of knowing the exact value H,
we usually know an interval containing H (see, e.g., [4, 9, 11, 16]), and sometimes a
probability distribution on this interval describing the relative frequency of different
measurement errors [16].

Classification vs. regression. In some cases, the desired variable H takes only finite
many values – e.g., sick or healthy; poor, medium, or rich, etc. Such problems are
known as classification problems.

In other cases, the variable H can take all possible values within a certain interval.
Such problems are known as regression problems.

Positive and negative examples. In addition to cases when we know both G and H –
which we will call positive examples, there are also some cases in which we know G,
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but we only have partial information about H – e.g., we know that H does not belong
to a certain interval. We will call such examples negative examples.

Why negative examples.How do we know that the actual value is not in an interval?
This is related to the fact that most measuring instruments are non-linear:

• they have ranges in which the resulting signal strongly depends on the actual value
of the measured quantity, and

• they have ranges in which the resulting signal does not contain any information
at all.

For example:

• many measuring instruments have a sensitivity level, below which it does not
detect anything – e.g., due to inertia;

• similarly, for most measuring instruments, there is an upper bound on possible
values that it can measure, and it does not generate any meaningful signals if the
actual value of the measured quantity exceeds this upper bound.

Usually, for the same quantity, there are different measuring instruments corre-
sponding to different ranges: e.g., different instrument measure weak currents and
very strong currents. In this case, we select an appropriate instrument based on the
expected value of the signal.

Somemeasuring instruments are tunable – ifwe knowbeforehand the approximate
value of the measured quantity, we can tune the instrument so that it will provide the
most accurate measurements in this particular interval. Such instruments we tune so
that the expected value of the signal will be most accurately measured.

Sometimes, our expectations are wrong, and the actual signal turned out to be
outside the interval on which we selected and/or trained the measuring instrument
– the actual value could be smaller than this interval’s lower endpoint, it could be
larger that the interval’s upper endpoint, we do not know. In this case, for the only
information about the measured quantity H is that this quantity is not located in the
given interval – so we have what we called a negative example.

Another type of situations that lead to negative examples is when we measure a
signed quantity @ – e.g., one of the components of velocity or of some other vector
quantity. Every sensor has an upper bound @0 above which it cannot measure. So, if
we do not detect anything meaningful, this means that the actual value H is outside
the corresponding interval [−@0, @0].

Positive andnegative examples in classification and in regression. In classification
problems – especially in binary classification problems, when we have only two
possible values H1 and H2 of the quantity H – negative example are ubiquitous:
indeed, every positive example in which we know that H = H2 can be interpreted as
a negative example in which we know that H is not equal to H1.

However, in regression problems, negative examples are usually not used. In
principle, they provide an additional information about the dependence, so it would
be beneficial to use them – however, they are not used because it is not clear how to
use them.
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What we do in this paper. In this paper, we show how to use negative examples,
and we show cases when the use of negative examples help.

In our analysis, we will cover all three major types of uncertainty: interval, fuzzy,
and probabilistic. In our analysis, we will assume, for simplicity, that the G values
are known exactly (i.e., to be more precise, that the inaccuracy in G can be safely
ignored), but that the values of H are known with uncertainty. In all three cases, we
assume that we know the family of dependencies H = 5 (G, 21, . . . , 2=) – e.g., the
family of all linear functions or the family of all quadratic functions – and we want
to find the values 2 = (21, . . . , 2=) of the parameters for which the corresponding
dependence is the best fit with the available data.

Comment. This paper is a revised and extended version of the paper [2].

Important comment: negative examples in education. Another application area
where negative examples are useful is education. A significant part of knowledge is
taught by presenting examples

(
G (:) , H (:)

)
of a problem G and of its correct solution

H. It is well know, however, that learning can be enhanced if, in addition to correct
solutions, student also see example of typical mistakes – e.g., pairs

(
G (:) , H (:)

)
in

which we know that H (:) is not a correct solution.

2 Case of Interval Uncertainty

Regression under interval uncertainty: a brief reminder. Following the general
simplifying assumption, let us first consider the case when the values G (:) are known
exactly, but the values H (:) are known with interval uncertainty – i.e., that for each
: , we know the interval

[
H (:) , H (:)

]
that contains the actual (unknown) value H (:) .

Based on these measurement results, we select the values 2 = (21, . . . , 2=) for
which the following condition is satisfied for all ::

H (:) ≤ 5

(
G (:) , 21, . . . , 2=

)
≤ H (:) , 1 ≤ : ≤  . (1)

Regression under interval uncertainty: algorithms. For each 8, we want to find
the range

[
2
8
, 28

]
of possible values of 28 . This range can be obtained by solving the

following two constraint optimization problems:

• to find 2
8
, we minimize 28 under the linear constraints (1); and

• to find 28 , we maximize 28 under the linear constraints (1).

In the general non-linear case, this problem is NP-hard (even finding one single
combination 2 that satisfies all the constraints (1) is, in general, NP-hard); see,
e.g., [7]. In such cases, constraint solving algorithms (see, e.g., [4]) can lead to
approximate ranges: e.g., to enclosures

[
2′
8
, 2 ′8

]
⊇

[
2
8
, 28

]
for the actual range.

The problem of computing the ranges
[
2
8
, 28

]
becomes feasible if we consider

families that linearly depend on the parameters 28 , i.e., families of the type
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5 (G, 21, . . . , 2=) = 50 (G) + 21 · 51 (G) + . . . + 2= · 5= (G). (2)

In this case, inequalities (1) become linear inequalities in terms of the unknowns 28:

H (:) ≤ 50

(
G (:)

)
+ 21 · 51

(
G (:)

)
+ . . . + 2= · 5=

(
G (:)

)
≤ H (:) , 1 ≤ : ≤  (3)

In this case, e.g., the range
[
2
8
, 28

]
of possible values of 28 can be obtained by solving

the following two linear programming problems – i.e., problems of optimizing a
linear function under linear constraints:

• to find 2
8
, we minimize 28 under the linear constraints (3); and

• to find 28 , we maximize 28 under the linear constraints (3).

There exist feasible algorithms for solving linear programming problems; see, e.g.,
[3, 8]. Thus, the corresponding regression problem can indeed be feasibly solved.

What if we have “negative” intervals?What if, in addition to “positive” intervals –
i.e., intervals that contain the H-values H (:) , : = 1, . . . ,  – we also have “negative”
intervals

(
H (ℓ) , H (ℓ)

)
, ℓ =  + 1, . . . , ! – i.e., intervals that are known not to contain

the corresponding values H (ℓ) . In this case, in addition to the condition (1) satisfied
for all : from 1 to  , we also have an additional condition that must be satisfied for
each ℓ from  + 1 to !:

5

(
G (ℓ) , 21, . . . , 2=

)
≤ H (ℓ) or H (ℓ) ≤ 5

(
G (ℓ) , 21, . . . , 2=

)
. (4)

In this case, the question is to find the values 2 = (21, . . . , 2=) that satisfy all the
constraints (1) and (4).

Negative intervals can help. Suppose that for a linear model H = 21 · G, we have two
observations: for G = −1 and for G = 1, we have H ∈ [−1, 1]. One can easily see that
in this case, the set of possible values of 21 is the interval [−1, 1].

In particular, for G = 2, the only information that we can extract from this data is
that H ∈ [−2, 2].

Now, if we know that for G = 2, the value H cannot be in the interval (−3, 2),
then the set of possible values of H narrow down to a single value H = 2, and the set
[−1, 1] of possible values of 21 narrows down to a single value 21 = 1.

With negative intervals, the problem becomes NP-hard already in the linear
case. Indeed, it is known that the following problem is NP-hard (see, e.g., [7, 15]):
given natural numbers B1, . . . , B= and B, find a subset of the values B8 that adds up to
B. In other words, we need to find the values 28 ∈ {0, 1} (describing whether to take
the 8-th value B8 or not) for which

=∑
8=1

28 · B8 = B.
This problem can be easily reformulated as an interval problem with positive and

negative examples. For this purpose, we take a linear model

H = 21 · G1 + . . . + 2= · G=
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and the following examples:

• a positive example in which G8 = B8 for all 8 and H ∈ [B, B]; consistency with this
positive example means that

B =

=∑
8=1

28 · B8;

• = additional positive examples; in the 8-th example, G8 = 1, G 9 = 0 for all 9 ≠ 8,
and H ∈ [0, 1]; consistency with each such example means that 28 ∈ [0, 1]; and

• = negative examples; in the 8-th example, G8 = 1, G 9 = 0 for all 9 ≠ 8, and H ∉ (0, 1);
consistency with each such example means that 28 ∉ (0, 1).

Together with the previous consistency, this means exactly that 28 ∈ {0, 1}.

So what do we do: first idea. NP-hard implies that, unless P = NP (which most
computer scientists believe to be impossible), no feasible algorithm is possible that
would always compute the exact ranges for 28 – or even check whether the data is
consistent with the model. So what do we do?

Each negative interval
(
H (ℓ) , H (ℓ)

)
means that the actual value of H (ℓ) is either in

the interval
(
−∞, H (ℓ)

]
or in the interval

[
H (ℓ) ,∞

)
. Thus:

• we can add, to  positive intervals, the first of these two semi-infinite in-
tervals, solve the corresponding linear programming problem, and get ranges[
2
(ℓ) ,−
8

, 2
(ℓ) ,−
8

]
for the coefficients 28;

• we can also add, to  positive intervals, the second of these two semi-infinite
intervals, solve the corresponding linear programming problem, and get ranges[
2
(ℓ) ,+
8

, 2
(ℓ) ,+
8

]
for the coefficients 28 .

Since the actual value H (ℓ) is either in the first or in the second of the semi-infinite
intervals, the actual range of possible values of each 28 belongs to the union of the
two intervals: [

2
(ℓ)
8
, 2
(ℓ)
8

]
=

[
2
(ℓ) ,−
8

, 2
(ℓ) ,−
8

] ⋃ [
2
(ℓ) ,+
8

, 2
(ℓ) ,+
8

]
, (5)

i.e., we take

2
(ℓ)
8

= min
(
2
(ℓ) ,−
8

, 2
(ℓ) ,+
8

)
and 2 (ℓ)

8
= max

(
2
(ℓ) ,−
8

, 2
(ℓ) ,+
8

)
. (6)

The actual value 28 belongs to all these intervals, so we can conclude that it
belongs to the intersection

[
2
8
, 28

]
of all these intervals:

[
2
8
, 28

]
=

!⋂
ℓ= +1

[
2
(ℓ)
8
, 2
(ℓ)
8

]
, (7)

i.e., we take
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2
8
= max

ℓ
2
(ℓ)
8

and 28 = min
ℓ
2
(ℓ)
8
. (8)

If this intersection is empty, this means that the model is inconsistent with obser-
vations.

Second idea. In the above idea, every time, we only take into account one negative
example. Instead, we can take into account two negative examples. Then, for each
pair (ℓ, ℓ′) of negative examples, we have four possible cases:

• we can have the case 0 = −− when Hℓ ∈
(
−∞, H (ℓ)

]
and Hℓ′ ∈

(
−∞, H (ℓ′)

]
;

• we can have the case 0 = −+ when Hℓ ∈
(
−∞, H (ℓ)

]
and Hℓ′ ∈

[
H (ℓ

′) ,∞
)
;

• we can have the case 0 = +− when Hℓ ∈
[
H (ℓ) ,∞

)
and Hℓ′ ∈

(
−∞, H (ℓ′)

]
; and

• we can have the case 0 = ++ when Hℓ ∈
[
H (ℓ) ,∞

)
and Hℓ′ ∈

[
H (ℓ

′) ,∞
)
.

For each of these four cases 0 = −−,−+, +−, ++, we can add the corresponding two
semi-infinite intervals to  positive intervals, and find the ranges

[
2
(ℓ,ℓ′) ,0
8

, 2
(ℓ,ℓ′) ,0
8

]
for the coefficients 28 . Then, we can conclude that the actual value of 28 belongs to
the union of these four intervals:[

2
(ℓ,ℓ′)
8

, 2
(ℓ,ℓ′)
8

]
=

⋃
0

[
2
(ℓ,ℓ′) ,0
8

, 2
(ℓ,ℓ′) ,0
8

]
, (9)

i.e., we take
2
(ℓ,ℓ′)
8

= min
0
2
(ℓ,ℓ′) ,0
8

and 2 (ℓ,ℓ
′)

8
= max

0
2
(ℓ,ℓ′) ,0
8

. (10)

The actual value 28 belongs to all these intervals, so we can conclude that it
belongs to the intersection

[
2
8
, 28

]
of all these intervals:[

2
8
, 28

]
=

⋂
 +1≤ℓ,ℓ′≤!

[
2
(ℓ,ℓ′)
8

, 2
(ℓ,ℓ′)
8

]
, (11)

i.e., we take
2
8
= max

ℓ,ℓ′
2
(ℓ,ℓ′)
8

and 28 = min
ℓ,ℓ′

2
(ℓ,ℓ′)
8

. (12)

In this method, we get, in general, a better range – with smaller excess width –
but now, instead of considering $ (! −  ) cases, we need to consider $

(
(! −  )2

)
cases.

We can get even more accurate estimates for the range if we consider all pos-
sible triples, 4-tuples, etc., of negative intervals, but then we will need to consider
$

(
(! −  )3

)
, $

(
(! −  )4

)
, etc. cases.
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3 What If We Are Interested in Several Quantities

Negative information that we analyzed so far: a reminder. In the previous text, we
considered negative examples corresponding to the case when a value of a quantity
H cannot be detected by a sensor tuned for values from some interval (H, H).

In this case, we can conclude that the actual value H is outside this interval.

There are other types of negative information. A similar – but somewhat more
complicated – situation occurs if we train, e.g., a camera to a certain area or a
microphone to a certain area of spatial directions. In such cases, we are not simply
limiting the range of possible values of a single quantity H. Instead,we simultaneously
limit the value of two or more quantities H1, . . . , H< to corresponding intervals:

H1 ∈
(
H1, H1

)
, . . . , H< ∈

(
H<, H<

)
. (13)

In this case, in contrast to the previously analyzed case, if we do not detect anything,
we cannot conclude that, e.g., the value H1 is necessarily not in the corresponding
interval

[
H1, H1

]
– this value may well be within this interval, but one of the other

quantities is outside its interval. All we know is that the tuple H = (H1, . . . , H<) is
not located inside the corresponding box

H ∉

(
H1, H1

)
× . . . ×

(
H<, H<

)
. (14)

Because of this inter-relation between different variables, to deal with such situations,
we can no longer concentrate on one of the quantities H8 – there are no restrictions
on each value H8 per se – we need to simultaneously consider all related quantities
H1, . . . , H<.

Let us describe the resulting problem in precise terms: general case. We know
that several quantities H1, . . . , H< depend on the quantities G = (G1, . . . , G?). We
assume that this dependence is described by functions from a certain family of
functions, characterized by parameters 21, . . . , 2=:

H1 = 51 (G, 21, . . . , 2=), . . . , H< = 5< (G, 21, . . . , 2=). (15)

We have several measurements in which the vector H = (H1, . . . , H<) was inside the
corresponding box, i.e., when we had, for all : from 1 to  :

H1
(:) ≤ 51

(
G (:) , 21, . . . , 2<

)
≤ H1 (:) ,

. . . (16)

H<
(:) ≤ 5<

(
G (:) , 21, . . . , 2<

)
≤ H< (:) .

We also have negative examples, for which, for each ℓ from  + 1 to !, the following
condition must be satisfied:
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51

(
G (ℓ) , 21, . . . , 2=

)
≤ H1 (ℓ) , or H1 (ℓ) ≤ 51

(
G (ℓ) , 21, . . . , 2=

)
, or

. . . , or (17)

5<

(
G (ℓ) , 21, . . . , 2=

)
≤ H< (ℓ) , or H< (ℓ) ≤ 5<

(
G (ℓ) , 21, . . . , 2=

)
.

The question is to find the values 2 = (21, . . . , 2=) that satisfy all the constraints (16)
and (17).

In partcular, for each of the parameters 28 , we need to find the range [2
8
, 28] of

possible values of this parameter:

• Each value 2
8
can be obtained by minimizing 28 under the constraints (16)

and (17).
• Similarly, each value 28 can be obtained by maximizing 28 under the constraints

(16) and (17).

Important case when the dependence on parameters is linear. As we have men-
tioned, in the general case, the corresponding problems are NP-hard evenwhenwe do
not have negative examples. In this no-negative-examples case, however, the problem
becomes feasible if we consider the common situations in which the dependence on
the parameters 28 is linear, i.e., in which

H1 = 51,0 (G) + 21 · 51,1 (G) + . . . + 2= · 51,= (G),

. . . (18)

H< = 5<,0 (G) + 21 · 5<,1 (G) + . . . + 2= · 5<,= (G).

In this case, the condition (16) corresponding to each measurement : takes the form:

H1
(:) ≤ 51,0

(
G (:)

)
+ 21 · 51,1

(
G (:)

)
+ . . . + 2= · 51,=

(
G (:)

)
≤ H1 (:) ,

. . . (19)

H<
(:) ≤ 5<,0

(
G (:)

)
+ 21 · 5<,1

(
G (:)

)
+ . . . + 2= · 5<,=

(
G (:)

)
≤ H< (:) .

Similarly, the condition (17) corresponding to each measurement ℓ takes the form

51,0

(
G (ℓ)

)
+ 21 · 51,1

(
G (ℓ)

)
+ . . . + 2= · 51,=

(
G (ℓ)

)
≤ H1 (ℓ) , or

H1
(ℓ) ≤ 51,0

(
G (ℓ)

)
+ 21 · 51,1

(
G (ℓ)

)
+ . . . + 2= · 51,=

(
G (ℓ)

)
, or

. . . , or (20)

5<,0

(
G (ℓ)

)
+ 21 · 5<,1

(
G (ℓ)

)
+ . . . + 2= · 5=,=

(
G (ℓ)

)
≤ H< (ℓ) , or

H<
(ℓ) ≤ 5<,0

(
G (ℓ)

)
+ 21 · 5<,1

(
G (ℓ)

)
+ . . . + 2= · 5<,=

(
G (ℓ)

)
.
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For each ℓ, we know that one of 2< possible inequalities (20) is satisfied.
How can we solve this problem?As we have mentioned, in the presence of negative
examples, even for this case – when the dependence on the parameters is linear –
the exact computations of the bounds 2

8
and 28 is an NP-hard problem already for

< = 1.
However, we can use the same ideas as in the previous section and come up with a

feasible algorithm for computing an enclosure for the desired range [2
8
, 28], i.e., for

computing the interval that contains the desired range. To be more precise, similarly
to the above case < = 1, we have a family of feasible algorithms that can bring us
closer and closer to the desired range.
First algorithm. The first algorithm in this sequence is when on each step, we take
into account only one negative example ℓ. For each ℓ:
• we add one of the 2< inequalities (20) to the system (19); thus, we get 2<

problems of minimizing 28 and 2< problems of maximizing 28; for each of 2<
pairs of linear programming problems, we thus find an interval of possible values
of 28;

• since one of these inequalities is satisfied, we can conclude that the desired range
is contained in the union of the resulting 2< intervals; we can compute this union
by computing the smallest of 2< lower endpoints and the largest of 2< upper
endpoints.

For each ℓ, we know that the actual range is contained in the corresponding union
– thus, it is contained in the intersection of these unions. To compute such an
intersection:
• we compute the largest of the lower endpoints corresponding to different ℓ, and
• we compute the smallest of the upper endpoints corresponding to different ℓ.

More accurate – but more time-consuming – algorithms. To get a more accurate
estimate of the desired range [2

8
, 28], instead of taking only one negative example

ℓ into account in each linear programming problem, we take two such negative
examples ℓ and ℓ′i into account. We have 2< possible inequalities for ℓ and we have
2< possible inequalities for ℓ′, so we have (2<)2 pairs of possible inequalities.

For each pair (ℓ, ℓ′):
• we add one of 2< inequalities (20) corresponding to ℓ and one of 2< inequalities

corresponding to ℓ′ to the system (19); thus, we get (2<)2 problems ofminimizing
28 and (2<)2 problems of maximizing 28; for each of (2<)2 pairs of linear
programming problems, we thus find an interval of possible values of 28;

• since one of these pairs of inequalities is satisfied, we can conclude that the
desired range is contained in the union of the resulting (2<)2 intervals; we can
compute this union by computing the smallest of (2<)2 lower endpoints and the
largest of (2<)2 upper endpoints.

For each pair (ℓ, ℓ′), we know that the actual range is contained in the corresponding
union – thus, it is contained in the intersection of these unions. To compute such an
intersection:
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• we compute the largest of the lower endpoints corresponding to different
pairs (ℓ, ℓ′), and

• we compute the smallest of the upper endpoints corresponding to different
pairs (ℓ, ℓ′).

Instead of pairs, we can consider triples, quadruples, etc. Every time we consider
tuples with one more element, the computation time increases – but we get more
accurate enclosures.

4 Case of Fuzzy Uncertainty

What is fuzzy uncertainty: a brief reminder. In some cases, the values H are not
measured but evaluated by an expert. An expert can say something like “the value
of H is close to 1.5”. To formalize such imprecise (“fuzzy”) knowledge, Lotfi Zadeh
invented special techniques – that he called fuzzy; see, e.g., [1, 5, 10, 12, 13, 14, 17].

In these techniques, for each imprecise expert statement about a quantity, we ask
an expert to estimate, on a scale from 0 to 1, his/her degree of confidence that the
expert’s statement holds for this value (e.g., that 1.7 is close to 1.5). The function
that assigns this degree to each possible value is called a membership function.

The degrees of confidence 0, 1, . . . in individual statements �, �, . . . enable us
also to estimate degrees of confidence in composite statements such as �& �, �∨�,
etc. The algorithms 5& (0, 1) and 5∨ (0, 1) for such estimates are called “and”- and
“or”-operations, or, for historical reasons, t-norms and t-conorms. For example, the
most widely used “and”-operations are min(0, 1) and 0 · 1.

Regression under fuzzy uncertainty: a brief reminder. In line with the general
idea, let us assume that we know the values G (:) exactly, and that we know the
corresponding H-valued H (:) with fuzzy uncertainty – i.e., that for each example :
and for each possible value H of this quantity, we know our degree of confidence
`: (H) that this value of H is possible.

In this case, the degree to which a model H = 5 (G, 21, . . . , 2=) is consistent with
the :-th observation is equal to `:

(
5
(
G (:) , 21, . . . , 2=

) )
, and the degree to which a

model is consistent with all  observations is equal to

5&

(
`1

(
5

(
G (1) , 2

))
, . . . , ` 

(
5

(
G ( ) , 2

)))
. (21)

A natural idea is to select the values 2 = (21, . . . , 2=) for which this degree is the
largest possible.

What if we have negative examples? Suppose now that, in addition to  positive
examples, we also have !− negative examples, for which we know that the expert’s
estimate is wrong. In fuzzy logic, the degree to which a statement is wrong is usually
estimated as 1 minus the degree to which this statement is true. So, for a negative
example, the degree to which this example is consistent with the model is equal to
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1 − `ℓ
(
5

(
G (:) , 21, . . . , 2=

))
. (22)

Thus, in this case, we should select a model for which the following degree takes
the largest possible value:

5&

(
`1

(
5

(
G (1) , 2

))
, . . . , ` 

(
5

(
G ( ) , 2

))
,

1 − ` +1
(
5

(
G ( +1) , 2

))
, . . . ,

1 − `!
(
5

(
G (!) , 2

)))
. (23)

5 Case of Probabilistic Uncertainty

Regression under probabilistic uncertainty: a brief reminder. Probabilistic un-
certainty means that for each measurement : , we know the probabilities of different
possible values H, i.e., we know, e.g., the probability density function d: (H) describ-
ing these probabilities.

In this case, the probability that amodel H = 5 (G, 21, . . . , 2=) is consistent with the
:-th observation is proportional to d:

(
5
(
G (:) , 21, . . . , 2=

) )
. It is usually assumed

that different measurements are independent. Thus, the probability that a model
is consistent with all  observations is equal to the product of the corresponding
probabilities

 ∏
:=1

d:

(
5

(
G (:) , 21, . . . , 2=

))
. (24)

A natural idea is to select the values 21, . . . , 2= for which this probability is the
largest possible. This is known as the Maximum Likelihood method.

What if we have negative examples? From the purely probabilistic viewpoint, it is
not clear how to handle such situations. However, since we have a solution for the
fuzzy case, we can use the fact – emphasized many times by Zadeh – that the main
difference between a membership function `(H) and a probability density function
d(H) is in normalization (see, e.g., [6] and references therein):

• a membership function is usually selected so that max
H
`(H) = 1, while

• the probability density function is selected so that the overall probability is 1, i.e.,
that

∫
d(H) 3H = 1.

Of course this is not the only difference: e.g., usually, different operations are used
in fuzzy and probabilistic cases; however, this is, in a nutshell, the main difference.

Thus:

• if we have a membership function, then, by multiplying it by an appropriate
constant, we can get a probability density function, and, vice versa,
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• if we have a probability density function d(H), then, by dividing it by < =

max
H′

d(H′), we will get a membership function.

So, a natural idea is to convert the original probabilistic knowledge d: (H) into
fuzzy one, with `: (H) = 2−1

:
· d: (H), where 2:

def
= max

H′
d: (H′). In this case, the

fuzzy approach to regression will lead us to maximize the expression (21). We want
the probability-to-fuzzy translation to be consistent with the Maximum Likelihood
approach. Thus, we need to select 5& (0, 1) = 0 · 1. In this case, the expression (21)
takes the form

 ∏
:=1

`:

(
5

(
G (:) , 21, . . . , 2=

))
=(

:∏
:=1

2−1:

)
·
(
 ∏
:=1

d:

(
5

(
G (:) , 21, . . . , 2=

)))
. (25)

This expression differs from (24) only by a multiplicative constant, so maximizing
this expression is indeed equivalent to maximizing the expression (24) – i.e., to the
Maximum Likelihood approach.

Now it is easy to take into account negative examples: we just maximize the
product

 ∏
:=1

`:

(
5

(
G (:) , 2

))
·

!∏
ℓ= +1

(
1 − `ℓ

(
5

(
G (ℓ) , 2

)))
, (26)

where
`: (H)

def
=

d: (H)
max
H′

d: (H′)
. (27)

Similarly to the derivation of the formula (25), we can see that maximizing the
expression (26) is equivalent to minimizing a simpler expression

 ∏
:=1

d:

(
5

(
G (:) , 2

))
·

!∏
ℓ= +1

(
1 − `ℓ

(
5

(
G (ℓ) , 2

)))
. (28)

6 Conclusions

What we did. In this paper, we provided a theoretical foundation for using negative
examples on regression-like problems, and we showed, on simplified toy examples,
that the resulting algorithms indeed lead to more accurate models.

What still needs to be done. Now that the theoretical foundation has been formu-
lated, we hope that the resulting algorithms and ideas will be applied to real-life
problems.
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