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Abstract

An interval can be represented as a point in a plane, e.g., as a point
with its endpoints as coordinates. We can thus define distance between
intervals as the Euclidean distance between the corresponding points. Al-
ternatively, we can describe an interval by its center and radius, which
leads to a different definition of distance. Interestingly, these two defini-
tions lead, in effect, to the same distance — to be more precise, these two
distances differ by a multiplicative constant. In principle, we can have
more general distances on the plane. In this paper, we show that only
for Euclidean distance, the two representations lead to the same distance
between intervals.

1 Formulation of the Problem

Need for interval uncertainty. Most information about physical quantities
comes from measurements, and measurements are never absolutely exact: the
actual (unknown) value = of a physical quantity is, in general, different from
the measurement result .

In many real-life situations, the only information that we have about the

measurement error Az = F — z is the upper bound A on its absolute value:
|Az| < A. In this case, based on the measurement result, the only information
that we gain about the actual value x is that this value is somewhere in the
interval [z, Z], where x =2 — A and T =T + A; see, e.g., [1, 2, 3, 4].

Two representations of intervals. In line with the previous subsection, we
can have two natural representations of an interval:

e we can represent an interval by its midpoint Z and radius (half-width) A;

e alternatively, we can represent an interval by its endpoints x = T — A and
T=7+A.



Two representations lead to two natural definitions of the distance
between intervals. If we represent an interval by a pair (Z,A), then it is
natural to define the distance between two intervals as the Euclidean distance
between the corresponding 2-D points

d((z1,Ar), (T2, A2)) = \/(51 —Z2)? + (A1 — Ag)2. (1)

On the other hand, if we represent an interval by its endpoints (z,T), then it is
natural to define the distance between two intervals as the Euclidean distance
between the corresponding 2-D points:

D((z1,71), (22, T2)) = V(&1 — 22)* + (T2 — T2)2. (2)

The two metrics differ by a multiplicative constant. The two metrics

differ by a multiplicative constant. Indeed, if we denote a def T1 — T2 and

p & A1 — Ao, then the first distance has the form

d= /a2 +b2. (3)
In these terms,
2y — 2y = (T1 — A1) = (T2 —Ag) = (1 —22) — (A1 —Ag) =a—b, (4)
and
Ty —To = (T1+ A1) — (T2 + A2) = (1 —22) + (A1 —Ag) =a+b. (5)
Thus,

D=+/(a—b)2+ (a+b)2. (6)

The expression under the square root is equal to
(a=0)"+ (a+b)* = 2(a® + %),

thus D = v/2 - d.

Instead of distances, we can consider their squares d? and D?, then we have
D? = 2d°.
Natural question. In the 2-D plane, instead of the square of the Euclidean
distance (x1 — x2)% + (y1 — y2)?, we can consider more general expressions

flz1 —x2) + f(y1 — y2), (7)

for some even function f(z) which is increasing for x > 0. For example, for
f(z) = |z|?, we get {,-distance.

A natural question is: for which functions f(z), the values of corresponding
f-distance (7) corresponding to two representations of an interval always differ
by a multiplicative constant?

What we do in this paper. In this paper, we prove that the only functions
f(x) with this property are functions of the type f(x) = c- 22 corresponding to
the usual Euclidean distance.



2 Main Result

Discussion. In terms of the above-defined differences a and b, the desired
property has the following form:

fla+b)+ fla=b)=C-(f(a) + f(b)). (8)

Proposition. The following two conditions are equivalent:

e f(x) is an even function which is strictly increasing for x > 0 and for
which there exists a constant C' for which (8) holds for all a and b;

e f(z) =c-x? for some constant c > 0.

Proof.

0°. Clearly, the function f(x) = c-z? is an even function which is strictly
increasing for z > 0 and for which there exists a constant C' = 2 for which (8)
holds for all a and b.

So, to prove the proposition, it is sufficient to prove that if a function f(z)
is an even function which is strictly increasing for > 0 and for which there
exists a constant C' for which (8) holds for all a and b, then f(z) = ¢ - 2?2 for
some ¢ > 0. Let us now assume that f(z) is such a function.

1°. Let us first prove that C' =2 and f(0) = 0.

Indeed, for b = 0, the formula (8) takes the form 2f(a) = C - (f(a) + f(0)),
i.e., the form (2 — C) - f(a) = C' - f(0). We cannot have C' # 2 since then the
expression (2 — C) - f(a) would be either increasing or decreasing and will not
be equal to a constant C - f(0). Thus, C' = 2 and hence, f(0) = 0. For C = 2,
the equality (8) take the form

fla+b)+ fla—b) =2(f(a) + f (b)) (9)

2°. Let us prove, by induction, that for every n > 1, we have

fln-a)=n?- f(a). (10)

Indeed, for n = 1, this is trivially true. So, we have the induction base.

Let us now prove the induction step. Let us assume that we have proved
(10) for all n = 1,...,k, let us prove that this equality holds for n = k + 1 as
well. For this, let is take b = k - a. Then, the formula (9) takes the form

f(k+1)-a) + f((k=1)-a) =2(f(a) + f(k - a)),

hence

f((k+1)-a) =2(f(a) + f(k-a)) = f((k—1)-a) (11)



We already know that
f(k-a) =k f(a), (12)
and that
f((k=1)-a)=(k—1)?* f(a). (13)
Substituting (12) and (13) into (11), we get
F((h+1)-0) = 2(f(a) + K2 £()) — (k= 1)?- f(a) = (2+2K2 — (k—1)?) - f(a) =
(242K -k +2k—1)- f(a) = (K*+2k+ 1) f(a) = (k+1)*- f(a). (14)
So, by induction, the formula (10) is indeed true for all n.

3°. Let us now prove that

firy=c-r? (15)

for all rational numbers r =

ISl k]
—

Indeed, for n = ¢ and a = —, the formula (10) implies that
q

f) =g f (;) , (16)

2
1 1
@) :
. . (17)
1 . .
Now, for n = p and a = 7 the formula (10) implies that

()5 o(2)

1
Substituting the expression (17) for f () into the formula (18), we conclude
q

that 5
()= )

2

hence

where we denoted ¢ % f().

The statement is proven.

4°. To complete the proof, we need to show that the formula f(z) = ¢- =z
holds for all real values x > 0. Indeed, for each ¢, each real number can be
approximated, from below and from above, by fractions

plg) +1

pa) , p@tl (20)

q q



where p(q) dof lg - ]. Since the function f(x) is increasing for x > 0, we have
plq plg) +1
PP < o < g (M2, (21)
q q
Due to Part 3 of this proof, we have
2
1
C(p(q>>§f(x)§c<p(q)+) . (22)
q q
In the limit ¢ — oo, both the left- and the right-hand sides of this double
inequality tend to c- 22, this indeed f(x) = ¢ - 22 for all x > 0.

Since the function f(x) is even, this equality is true for all . The proposition
is proven.
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