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Abstract

Empirical double-exponential formulas are known that describe how
the amount of cracks and potholes in a pavement grows with time. In this
paper, we show that these formulas can be explained based on natural
symmetries (invariances) — such as invariance with respect to changing
the measuring unit or invariance with respect to changing a starting point
for measuring time.

1 How the Amount of Cracks and Potholes Grows
with Time: Empirical Formulas

Cracks and potholes. When a road is built, it is almost perfect — it has only
miniature cracks and potholes, not worthy of these names. However, as the road
is used, cracks and potholes appear and start growing.

How transportation engineers usually gauge the amount of cracks and
potholes. The amount of cracks is usually gauged the overall length C' of the



longitudal cracks outside the direct wheel path. The amount of potholes is
usually gauged by the total area P of potholes.

As the road is used, the quality of the pavement deteriorates, and the values
C and P grow. This growth starts at some small values corresponding to the
newly built road — age t = 0 — and continues growing until they reach the
maximum — the undesirable bad state when the whole road is covered by cracks
and potholes.

Empirical formulas. According to [3], both growths are described by similar
formulas

C =ac -exp(—be - exp(—ceo - t)); (1)
P =ap-exp(—bp -exp(—cp - t)). (2)

What we do in this paper. In this paper, we use natural symmetry ideas to
provide a theoretical explanation for these empirical formulas.

2 Symmetry Ideas: A Brief Reminder

Natural transformations. In science and engineering, we are interested in the
values of different physical quantities. We describe these quantities in numerical
form, but the numerical values of the corresponding quantities depend on the
measuring unit — and for some quantities such as temperature or time, also on
the starting point.

If we change the measuring unit for length from meters to centimeters, then
all numerical values are multiplied by 100: e.g., 2 m becomes 2 - 100 = 200 cm.
In general, if we replace the original measuring unit with a new unit which is A
times smaller, all numerical values are multiplied by A\: * — X = X -x. This
numerical transformation is known as scaling.

Similarly, if we start measuring time not from our year 0, but — as the French
Revolution suggested — with the year 1789 when the revolution started, then
from all year values, we should subtract 1789. In general, if we replace the
original starting point with the one which is ¢ units before, then we add x¢ to
all numerical values: * — X = x + x¢. This numerical transformation is known
as shift.

Natural symmetries. For most physical quantities, there is no fixed mea-
suring unit — and sometimes no fixed starting point. It is therefore reasonable
to require that the dependencies y = f(x) between physical quantities also not
depend on the choice of the measuring unit (and possibly on the choice of the
starting point). In physics, such invariance is called symmetry; see, e.g., [2, 4].

Of course, if we just change the unit and/or starting point for z, to keep the
same formula true in the new units, we may need to appropriately change the
unit/starting point for y. For example, to preserve the formula d = v - ¢ — that
the path is the product of speed and time — when we change the unit for time,
we need to appropriately change the unit for speed.



With this is mind, let us describe possible invariant dependencies.

Scaling-to-scaling (sc-sc). Let us first consider the case when the dependence
remains the same after we apply scaling both to x and to y. In precise terms,
we assume that for every A > 0, there exists a value () (depending on A) such
that if y = f(z), then Y = f(X), where X = A2z and Y = pu(A) - y. If we
plug in the expressions for Y in terms of y and X in terms of = into the formula
Y = f(X), we conclude that f(\-z) = u()\) -y. Here, y = f(x), so we conclude
that

) = p(A) - f (). (3)

It is known (see, e.g., [1]) that every measurable dependence f(z) with this
property has the form

flz)=A-z% (4)
for some A and a.

Comment. The general proof is somewhat complicated, but for differentiable
dependencies f(z) — and most physical dependencies are differentiable — this is

OSED)
f(x)

is differentiable too. Thus, we can differentiate both sides of the equation (3)
with respect to A. As a result, we get

z- ff(Az)=p'(N) - flz). ()

In particular, for A = 1, we get

easy to prove. Indeed, if f(x) is differentiable, then the function u(\) =

df

T - =a /s (6)
where a %' 1/ (1). We can separate the variables x and f if we multiply both
sides of the equality (6) by %, then we get

% =q- d?x (7)
Integrating both sides, we get
In(f) =a-In(z) + C, (8)

where C is the integration constant. Applying the function exp(z) of both sides
of the equality (8), we get the desired expression f(z) = A-z%, with A = exp(C).

Shift-to-scaling (sh-sc). Let us consider the case when the dependence re-
mains the same after we apply shift to  and scaling to y. In this case, for every
xo, there exists a value p(zp) (depending on zp) such that if y = f(z), then
we have Y = f(X), where X = 2+ 20 and Y = p(zg) - y. If we plug in the



expressions for Y in terms of y and X in terms of z into the formula Y = f(X),
we conclude that f(x + x0) = p(xo) - y. Here, y = f(x), so we conclude that

[z +20) = (o) - f(2). (9)

It is known (see, e.g., [1]) that every measurable dependence f(x) with this
property has the form

f(z) = A-exp(a-z), (10)
for some A and a.

f(z+20) .
— is

f(z)
differentiable too. Thus, we can differentiate both sides of the equation (9) with
respect to xg. As a result, we get

Comment. If f(x) is differentiable, then the function p(zg) =

f(@+ @) = i (20) - f(2). (11)
In particular, for zo = 0, we get
daf
—a- 12
Tour (12)

where a 1/ (0). We can separate the variables « and f if we multiply both

d
sides of the equality (6) by Tx’ then we get
daf
— =a-dx. 13
7 (13)
Integrating both sides, we get
In(f)=a-z+C, (14)

where C is the integration constant. Applying the function exp(z) of both sides
of the equality (14), we get the desired expression f(x) = A -exp(a - x), with
A =exp(C).

Scaling-to-shift (sc-sh). Let us now consider the case when the dependence
remains the same after we apply scaling to = and shift to y. In precise terms,
we assume that for every A\ > 0, there exists a value yo(\) (depending on \)
such that if y = f(z), then Y = f(X), where X = Az and Y = y + yo ().
If we plug in the expressions for Y in terms of y and X in terms of = into the
formula Y = f(X), we conclude that f(\-z) =y + yo(\). Here, y = f(z), so
we conclude that

f-x) = f(@) + yo(A). (15)

It is known (see, e.g., [1]) that every measurable dependence f(z) with this
property has the form
f(z) =a-In(x) + C, (16)



for some a and C.

Comment. If f(z) is differentiable, then the function yo(A) = f(A - z) — f(x)
is differentiable too. Thus, we can differentiate both sides of the equation (15)
with respect to A. As a result, we get

z- f'(A- @) =1(N). (17)
In particular, for A = 1, we get

a@ _

. = 18
o3, (18)

where a & yo(1). We can separate the variables « and f if we multiply both
d

sides of the equality (6) by —x, then we get
x

d
df =a- =, (19)
x
Integrating both sides, we get
f(z) =a-In(x) + C, (20)

where C' is the integration constant.

Shift-to-shift (sh-sh). In this case, for every x, there exists a value yo(z0)
such that if y = f(z), then we have Y = f(X), where X =z + 2 and ¥ =
y + yo(xo). If we plug in the expressions for Y in terms of y and X in terms of
x into the formula Y = f(X), we conclude that f(z + xo) = y + yo(xo). Here,
y = f(x), so we conclude that

f(@ +x0) = f(2) + yo(zo)- (21)

It is known (see, e.g., [1]) that every measurable dependence f(z) with this
property has the form
f@) =a a2+, (22)

for some a and C.

Comment. If f(x) is differentiable, then the function yo(z¢) = f(x +x¢) — f(x)
is differentiable too. Thus, we can differentiate both sides of the equation (9)
with respect to xg. As a result, we get

'@ + o) = yp(x0). (23)
In particular, for ¢y = 0, we get
f'(@)=a, (24)

where a % y6(0). Integrating, we get f(x) = a-x+C, where C' is the integration
constant.



3 So How Does Crack or Pothole Amount De-
pend on Time

What we want: a brief reminder. We want to find the dependence of the
quantity ¢ (crack or pothole amount) on time ¢t. We know:

e that the for ¢ = 0, the value ¢(t) is small positive,
e that the value ¢(¢) increases with time, and

e that the value ¢(t) tends to some large constant value when ¢ increases.

What are possible symmetries here? For crack amount C' and for pothole
amount P, there is an absolute starting point — 0, when we have no cracks
and no potholes. However, it makes sense to use different units of length and
different units of area, so scaling makes perfect sense.

For time, as we have mentioned, both shift and scaling make sense.

First idea. If view of the above analysis, let us see if any of the above symmetric
dependencies satisfy the desired property.

Since for ¢, only scaling makes sense, we can only consider two possibilities:
sc-sc and sh-sc. Let us consider them one by one.

First idea: sc-sc case. In the sc-sc case, we have ¢(t) = A -t*. Since we
want a non-negative value, we have to take A > 0. Since we want ¢(t) to be
increasing with time, we have to take a > 0. However, in this case:

e ¢(0) is zero — while we want it to be positive, and

e ¢(t) tends to infinity as ¢t increases — while we want it to tend to some
constant.

First idea: sh-sc case. In the sh-sc case, we have ¢(t) = A-exp(a-t). Again,
since we want a non-negative value, we have to take A > 0. Since we want ¢(t)
to be increasing with time, we have to take a > 0. In this case:

e ¢(0) is positive, which is exactly what we wanted, but

e ¢(t) tends to infinity as ¢ increases — while we want it to tend to some
constant.

So what do we do? The first idea does not work, so what should we do?

The above arguments about possible dependencies deal with the case when
the quantity y directly depend on the time ¢. However, in our case, cracks
and potholes do not directly depend on time: what changes with time is stress,
which, in its turn, causes the pavement to crack. In other words, instead of the
direct dependence of the quantity ¢ on time:

e we have ¢ depending on some auxiliary quantity z, and



e we have z depending on time t.

For both dependencies ¢(z) and z(t) we can have symmetry-motivated for-
mulas. Let us see which combinations of these formulas provide the desired
properties of the resulting dependence ¢(t) = ¢q(z(t)) — that this value is pos-
itive for ¢ = 0, increases for ¢ > 0, and tends to a finite limit when ¢ — oo.

Possible options of the ¢(z) dependence. Since for ¢, only scaling is possi-
ble, for possible dependencies ¢(z), we have either the sc-sc option ¢(z) = A - 2°
or the sh-sc option ¢(z) = A - exp(a - 2).

First option ¢(z) = A-z®. In this option, when ¢(z) is sc-sc, it does not make
sense to consider sh-sc or sc-sc options for z(t), since, as one can check, this will
be equivalent to sh-sc or sc-sc symmetry for ¢(t), and we have already shown
that this is not possible. So, to go beyond previously considered options, we
need to consider two remaining options for z(¢): sh-sh option z(t) = ay - t + Cy,
and sc-sh option z(t) = a; - In(¢t) + C1.

In the first case, we have ¢(t) = A-2% = A-(a1-t+C1)®. We can equivalently

describe it as q(t) = Ay - (t +c2)?, where A; = A+ (a1)® and ¢y = ﬁ The need
aj

to have positive values of ¢ implies A > 0, the need to have ¢(t) increasing leads
to a > 0, but then, for t — oo, the resulting expression tends to infinity — while
we want it bounded.

In the second case, we have q(t) = A-2* = A-(ay-In(t)+C1)®. Similarly to the
first case, we can equivalently describe this expression as q(t) = A; - (In(¢)+c2)?,

with A1 = A (a1)® and ¢y = =L The need to have positive values of ¢ implies
a

1
A > 0, the need to have ¢(t) increasing leads to a > 0, but then, for ¢ — oo, the
resulting expression also tends to infinity — while we want it bounded.

Second option ¢(z) = A-exp(a- z). In this option, when ¢(z) is sh-sc, it does
not make sense to consider sh-sh or sc-sh options for z(t), since, as one can check,
this will be equivalent to sh-sc or sc-sc symmetry for ¢(t), and we have already
shown that this is not possible. So, to go beyond previously considered options,
we need to consider two remaining options for z(t): sc-sc option z(t) = Ay - t%,
and sh-sc option z(t) = A; - exp(a; - t).

In the first case, ¢(t) = A-exp(a-z) = A-exp((a- A1) -t**). The need to have
positive values of ¢ implies A > 0. The behavior of this expression depends on
the sign of the product a - A;.

e If a- A; > 0, then the need to have ¢(t) increasing leads to a; > 0, but
then, for ¢ — oo, the resulting expression tends to infinity — and we want
it bounded.

e If a- A; < 0, then the need to have ¢(¢) increasing leads to a; < 0, but
then, for t — 0, we have t~191l — oo, hence (a - A;) - t~!91l — —o0, and
q(t) = A-exp((a- Ay) -t~y — 0, but we want the value ¢(0) to be
positive.



So, the only possible case is the second case, when
qlt) = A-expla-2) = A- ((a- Ay) - expla - 1)),

which is exactly the desired formulas (1) and (2).

Conclusion. So, we can conclude that the only symmetry-motivated depen-
dence ¢(t) for which ¢(0) > 0 and ¢(¢) increases until some finite number is the
dependence (1) and (2). Thus, we have indeed justified the empirical dependen-
cies (1) and (2).
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