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Abstract
In principle, one can have a continuous functional dependence y =
f(x1,...,25) for which, for each proper subset of n + 1 variable
T1,...,%n,Yy, there is no relation: i.e., for each selection of n variables

out of these n + 1, all combinations of these n values are possible. How-
ever, for fuzzy operations, there is always some non-trivial relation be-
tween y and one of the inputs z;; for example, for “and”-operations (t-
norms) y = fg(w1,22), we have y < z1; for “or”-operations (t-conorms)
y = fv(z1,22) we have 1 < y, etc. In this paper, we prove a general
mathematical explanation for this empirical fact.

1 Formulation of the Problem

Empirical fact. In general, it is quite possible to have a continuous functional
dependence y = f(x1,...,x,) for which, for each proper subset of n+1 variable
Z1,-..,Tpn,Yy, there is no relation: i.e., for each selection of n variables out of
these n + 1, all combinations of these n values are possible.

One can easily check that, e.g., a linear dependence y = ¢ -1 +...4+¢p - Ty
with non-zero coefficients ¢; has this property. Indeed, we can select arbitrary
values of n variables z1,...,%;—1,%;41,...,Zn, Y, then we can find the remaining
value x; as

y—(Cl X1t o+ Co1 T+ Gy -xi+1—|—...—|—cn-xn)

€Ty = .
Z;

However, for fuzzy operations (see, e.g., [1, 2, 3, 4, 5, 7]), there is always
some non-trivial relation between y and one of the inputs z;. For example, for



“and”-operations (t-norms) y = fg (21, x2), we have y < x1. For “or”-operations
1 + X9

(t-conorms) y = fy(z1,22) we have 1 < y. For the average y = 5 e

have z1/2 < y, etc.

Natural question. A natural question is whether the above empirical fact is
specific for fuzzy operations, or it is a general mathematical fact.

What we do in this paper. In this paper, we prove that it is indeed a general
mathematical fact, which is universally valid — if we consider a realistic setting
for this question.

2 Formalization of the Problem

In practice, all the values are bounded. In general, numerical values that
we process come from measurements — or from expert estimates. Theoretically,
we can consider arbitrarily large and arbitrarily small values, but in practice,
our abilities to measure are limited. Each measuring instrument has a bounded
range of values that it can measure. There are finitely many different types of
measuring instruments. So, by using all of them, all we can cover is a union of
bounded ranges covered by each of these instruments — which is itself a bounded
set. Thus, all possible measured values of each quantity x; are located on some
interval [z;,T;].

We can only distinguish between finitely many values. Measurements
are never absolutely accurate; see, e.g., [6]. We can only measure a quantity
with some accuracy € > 0. From this viewpoint, only values which differ by
more than ¢ are distinguishable — in the sense that they correspond to different
actual values. Thus, each measurement result is indistinguishable from one of
the values z;, z; +¢, 2; +2¢, ..., T; — €, T;.

In other words, for each quantity, there are only finitely many distinguishable
values. We can order them as 0-th, 1-st, etc. Let us denote the number of the
last element by m. To simplify the description, we can denote these values

simply by 0, 1, ..., m. In these terms, a function f(z1,...,x,) takes n values
x; from the set {0,1,...,m} and returns the value y = f(z1,...,z,) from the
same set {0,1,...,m}. So, we arrive at the following definition.

Definition 1. Let m > 2 and n > 2 be integers. By a m-n-function, we will
mean a function f:{0,1,...,m}"™ — {0,1,...,m}.

What continuity means in this context. Intuitively, continuity means that
if one of the inputs changes a little bit, then the value of the function cannot
jump, it much also change only a little bit. In our case, a small change means
changing the input by 1, and a jump would means that the resulting value of
y changes by 2 or more — thus skipping (“jumping over”) intermediate values.
Thus, we arrive at the following definition.



Definition 2. We say that an m-n-function f(z1,...,x,) is continuous if for
every i and all possible values xy, ..., T, and i, if |v; — x}| < 1, then

|f(.5617 ey L1, Lgy L4 1y - - - 7l‘n) — f(.fCh . ,mi_l,x;,xi_,_l, e 7$n)| S 1.

What does it mean to imply relations. No relation between n variables
means that all combinations of these variables are possible under the given
functional dependence. Thus, we arrive at the following definitions.

Definition 3. We say that a tuple (x1,...,2;-1,Zit1,-.-,ZTn,Yy) is consistent
with the functional relation y = f(x1,...,xy,) if there exists a value ; for which
f(l‘l, ey L1, Lgy L1y - - - ,l‘n) =Y.

Definition 4. We say that an m-n-function f(x1,...,x,) does not imply a rela-
tion between the variables if for every i every tuple (x1,...,Zi—1,Tit1, -, Tn,Y)

is consistent with the functional relation y = f(x1,...,zn).
Definition 5. We say that an m-n-function f(z1,...,2,) implies a relation

between the variables if there exist an index i and a tuple

(l‘l,...7.’I,‘i_1,.’1,‘i+1,...,l‘n,y)

which is not consistent with the functional relation y = f(x1,...,2n).

3 Main Result

Proposition 1. Every continuous m-n-function f(x1,...,x,) implies a relation
between the variables.

Proof.

o ) . : /
1°. Let us first prove that if for some z1,...,2;,-1, i, Tit1,- .., Ty and ) # z;,
we have

/
f(xl, e ,xi,1,$i,$i+1, e ,{En) = f(xl, ey Li—1, (Ei, (Ei+1, e ,xn),
then the function f(z1,...,x,) implied a relation between the variables.

Indeed, since the value y = f(x1,...,x,) is uniquely determined by the values
of n variables x1, ..., Z,, the overall number of the tuples (z1,...,zy,y) which
are consistent with the given functional dependence y = f(x1,...,x,) is equal
to the number of all possible n-tuples (z1,...,z,); we will call them x-tuples.
We have m + 1 possible values of z1, we have m + 1 possible values of x5, etc.,
so the overall number of n-tuples is equal to (m + 1)".

In principle, there are also (m + 1)™ different possible n-tuples

(xlv sy L1y L1y - - 7xn7y);



let us call them i-tuples. Each i-tuple which is consistent with the functional
relation is uniquely determined by the corresponding z-tuple. Because of the
equality

/
f(acl,...,xi,l,xi,xiﬂ,...,xn):f(xl,...,xi,l,xi,xiﬂ,...,xn),
two different z-tuples
. oy d . Iy
(1.17~" a‘rlflvmzvaJrlv"'vxn) an (1.17~'~ax2717mivmz+17"'7xn)

lead to the same i-tuple. Thus, the number of different i-tuples which are
consistent with the functional relation is smaller than or equal to (m + 1)™ — 1.
On the other hand, there are (m + 1)™ possible i-tuples. This means that at
least one of the i-tuples is not consistent with the functional relation — and thus,
the corresponding function indeed implies the relation between the variables.

2°. Let us now prove that if for some i and for some values x1,...,%;_1,..., Ty,
the value y = f(x1,...,2-1,0,%iy1,...,x,) is different from 0 and m, then the
function f(z1,...,z,) implies a relation between the variables.

Indeed, suppose that 0 < y < m. In general, for m different z;, we have
m + 1 values f(z1,...,%i—1, %, Tit1,--.,%n). If two of these values coincide,
then, due to Part 1 of this proof, f implies a relation between the variables. So,
to prove this result, it is sufficient to consider the case when all m + 1 values

flz1, ..., @i—1, 24, Tiy1, ..., x,) are different.
In particular, this means that the value f(z1,...,zi—1,1,Zi41,...,2y) is
different from y = f(z1,...,2;-1,0,2;41,...,2,). Because of continuity, it has

to be equal either to y — 1 or to y + 1.

2.1°. Let us first consider the case when f(x1,...,2,-1, 1L, xiy1,...,2,) =y+1.

In our case, the next value f(z1,...,%;-1,2, %41, ..., Ty,) cannot be equal to
y or to y 4+ 1, and due to continuity, it cannot differ from y + 1 by more than 1.
Thus, we conclude that f(x1,...,2;-1,2,Zit1,...,%,) =y + 2 and, in general,
that f(z1,...,%i—1,Ti, Tig1,...,2Ln) = ¢; +y. However, this is not possible for
x; = m, since in this case, due to y > 0, we have x; + y = m + y > m, while all
the values of the function f are between 0 and m.

2200 If f(xy,. .. 21, L, @ig1, ...y xy) = y — 1, then we similarly get

f(xla"'7x7l—172,$i+1,...,$n) :y_Q

and, in general, that f(x1,...,2;-1,%, Tigy1,...,%n) = Yy — ;, but this is not
possible for x; = m, since in this case, due to y < m, we have y—x; = y—m < 0,
while all the values of the function f are between 0 and m.

3°. Let us now consider the value f(0,...,0). Due to Part 2 of this proof, if
this value is different from 0 and m, then the function f(zi,...,z,) implies a
relation between the variables.

Let us now consider the two remaining cases

£(0,0,...,0) =0 and £(0,...,0) = m.



3.1°. If f(0,0,...,0) = 0, then, since the function f(x1,...,x,) is continuous,
the value f(1,0,...,0) must be 1-close to 0, i.e., equal either to 0 or to 1.

e If f(1,0,...,0) = 0, then f(0,0,...,0) = f(1,0,...,0), and so, due to
Part 1 of this proof, the function f(z1,...,x,) implies a relation between
the variables.

o If f(1,0,...,0) = 1, then, due to Part 2 of this proof, the function
f(x1,...,x,) implies a relation between the variables.

3.2°. Similarly, if f(0,...,0) = m, then, since the function f(x1,...,x,) is
continuous, the value f(1,0,...,0) must be 1-close to m, i.e., equal either to m
or tom — 1.

e If f(1,0,...,0) = m, then f(0,0,...,0) = f(1,0,...,0), and so, due to
Part 1 of this proof, the function f(x1,...,x,) implies a relation between
the variables.

e If f(1,0,...,0) = m — 1, then, due to Part 2 of this proof, the function
f(x1,...,x,) implies a relation between the variables.

4°. In all the cases, the function f(x1,...,z,) implies a relation between the
variables. The proposition is proven.

4 Auxiliary Result: Case of m =1

Analysis of the problem. In the previous section, we considered the case
when m > 2. But what if m = 1, i.e., the set of all possible values is the binary
set {0,1}? In this case, the answer is somewhat different, because all possible
values are 1-close and thus, all 1-n-functions are continuous:

Proposition 2. Every I-n-function f(x1,...,2,) is continuous.

Comment. Since for m = 1, continuity is no longer a restriction, in this cases,
there are some functions which do not imply the relation between the variables.
These functions are described in the following proposition:

Definition 6.

e By a parity function, we mean a 1-n-function f(x1,...,z,) that returns 1
if the number of 1s among n variables x1,...,x, is even, and 0 otherwise.

e By an anti-parity function, we mean a I-n-function f(xi,...,x,) that
returns 0 if the number of 1s among n variables x1, ..., x, is even, and 1
otherwise.

Proposition 3. For a I-n-function f(x1,...,2,), the following two conditions
are equivalent to each other:



e the function f(x1,...,x,) does not imply a relation between the variables,
and

e the function f(x1,...,xy,) 48 either a parity function, or an anti-parity
function.

Comment. With respect to logical operations, this means the main result of this
paper — that every continuous function implies a relation between the variables —
is only true for fuzzy logic (even if we consider only finitely many fuzzy degrees),
but it is not true for the traditional 2-valued logic.

Proof.

1°. Let us first prove that both the parity and the anti-parity functions do not
imply the relation between the variables.

Indeed, since we know the value y = f(x1,...,%i—1,%i, Tit1,...,Tpn), We
know whether the number n; of 1s among 1, ...,2;—1,Z;, Tit1,- . . , T, Needs to
be even or odd.

1.1°. If the number n; has to be even, then:

e if the number of 1s among the known variables z1,...,2;—1,%41,...,%n
is already even, then we take x; = 0;

e if the number of 1s among the known variables z1,..., 2,1, Z;11,...,Zp
is odd, then we take x; = 1.

1.2°. If the number n; has to be odd, then:

e if the number of 1s among the known variables z1,...,2;—1,Zi41,...,Zn
is already odd, then we take x; = 0;

e if the number of 1s among the known variables z1,...,2;—1,Zi41,...,%n
is even, then we take z; = 1.

2°. Let us now assume that the function f(x1,...,z,) does not imply a relation
between the variables. Let us prove that in this case, this function is either the
parity function or the anti-parity function. To prove this, let us consider two
possible values (0 or 1) of f(0,...,0).

2.1°. Let us first consider the case when f(0,...,0) = 0. For each ¢, what is
the possible value of f(0,...,0,1,0,...,0) where we have 1 on the i-th place?
If f(0,...,0,1,0,...,0) = f(0,...,0) = 0, then, due to Part 1 of the proof of
Proposition 1, the function f(xi,...,x,) implies a relation between the vari-
ables, which contradicts to our assumption. Thus, f(0,...,0,1,0,...,0) =1 for
all 4.

Similarly, if we add one more 1, we cannot get the same value of the function
f, so we get f(0,...,0,1,0,...,0,1,0,...,0) = 0 for all the tuples that have
two 1s. Similarly, we can prove that f(z1,...,2,) =0 if we have even number



of Is and f(zx1,...,2,) = 1 if we have odd number of 1s, i.e., that f(z1,...,2,)
is the anti-parity function.

2.2°. Similarly, let us consider the case when f(0,...,0) = 1. For each i,
what is the possible value of f(0,...,0,1,0,...,0) where we have 1 on the i-th
place? If f(0,...,0,1,0,...,0) = f(0,...,0) = 1, then, due to Part 1 of the
proof of Proposition 1, the function f(x1,...,z,) implies a relation between the
variables, which contradicts to our assumption. Thus, f(0,...,0,1,0,...,0) =0
for all 4.

Similarly, if we add one more 1, we cannot get the same value of the function
f, sowe get f(0,...,0,1,0,...,0,1,0,...,0) = 1 for all the tuples that have two
1s. Similarly, we can prove that f(z1,...,z,) = 1 if we have even number of
1s and f(x1,...,2,) = 0 if we have odd number of 1s, i.e., that f(xy,...,x,) is
the parity function.

3°. The proposition is proven.
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