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Abstract. In the traditional fuzzy logic, we can use “and”-operations
(also known as t-norms) to estimate the expert’s degree of confidence in a
composite statement A & B based on his/her degrees of confidence d(A)
and d(B) in the corresponding basic statements A and B. But what if
we want to estimate the degree of confidence in A & B & C' in situations
when, in addition to the degrees of estimate d(A), d(B), and d(C') of the
basic statements, we also know the expert’s degrees of confidence in the
pairs d(A& B), d(A& C), and d(B & C)? Traditional “and”-operations
can provide such an estimate — but only by ignoring some of the available
information. In this paper, we show that, by going beyond the traditional
“and”-operations, we can find a natural estimate that takes all available
information into account — and thus, hopefully, leads to a more accurate
estimate.

Keywords: Fuzzy logic - “And”-operations (t-norms) - Maximum en-
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1 Formulation of the Problem

Why do we need fuzzy logic in the first place? A large amount of human
activity has been automated, but in many areas, human expertise, human skills
are still needed. We use human doctors when we are ill, we use human drivers
and human pilots, etc.

Not all experts and specialists are equal, some are much better than others.
In the ideal world, all diagnoses will be made by the top medical doctors, all
planes should be controlled by the top pilots — but in reality, there are not that
many top doctors, not that many top pilots, not that many top drivers, and it
is not possible for them to serve all patients and all the planes.

It is therefore desirable to use the knowledge of the top experts to help others
make better decisions — and even, if possible, to design automatic systems that
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would diagnose patients, fly planes, and drive cars as well as the best human
specialists.

Usually, top experts are quite willing to share their expertise, to teach others.
But the problem is that when their share their expertise, they use imprecise
(“fuzzy”) words from natural language like “small”, “medium”, “large”, “short”,
etc. This is easy to explain: many of us drive cars, but hardly anyone can express
his/her driving experience in precise terms. If you ask any driver how much to
brake if a car 100 meters in front slows down from 100 to 95 km/h, a natural
answer is “a little bit” — while an automatic system needs to know for how many
milliseconds to press the brake and with how many Newtons of force.

To describe such important knowledge in precise terms, Lotfi Zadeh came
up with the idea of fuzzy logic; see, e.g., [1,5,8,12,13,15]. His main observation
was that, in contrast to properties like “less than 0.5 sec” which are either true
or false for any given time duration, for properties like “short” the situation is
different: yes, very short time durations are absolutely short, and very long time
durations are absolutely not short, but for intermediate time durations, their
“shortness” is only true to some degree.

In a computer, “absolutely true” is usually represented by 1, and “absolutely
not true” (“false”) by 0. It is therefore reasonable to characterize intermediate
degrees of confidence by numbers between 0 and 1. This is exactly what Zadeh
proposed to describe properties like “small”: ask the expert to indicate, for each
possible value z of the corresponding quantity, to what extent — on the [0, 1]-
scale — this value is small. The resulting function p(x) assigning a degree to each
value z is known as the membership function or, alternatively, as the fuzzy set.

Why we need “and”-operations (t-norms). Expert rules usually have sev-
eral conditions: e.g., we can have a braking rule that describes what happens
when the car is close and slows down a little bit, we can have a different rule
that describes what happens when the car is close and slows down drastically.

We can ask an expert, for each possible value d of the distance, to what
extent this distance is close. We can also ask the expert, for each possible value
Av of slowing down, to what extent this value can be described as “a little bit”.
But what we need, to implement this rule, is to know the degree to which, for
two given values d and Av, to what extent d is small and Av corresponds to “a
little bit”.

Strictly speaking, for this, we need to ask the expert’s opinion about all
possible pairs of values. Often — e.g., in medical diagnostics — we need to take
into account the values not of two but of a dozen or more different quantities:
temperature, upper and lower blood pressure, pulse, etc. Even if we use only 3 or
4 different values of each quantity, we can have 3'? or 4'2? possible combinations
of values. The value 4'2 is about 16 million, and there is no way that we can ask
the expert these thousands and millions of questions.

Since we cannot directly ask the expert about his/her degree of confidence
in all possible “and”-combinations S1 & Ss & ... & .S,,, we therefore need to be
able, given the expert’s degrees of confidence a and b in statement A and B,
to estimate his/her degree of confidence in the composite statement A & B. The
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value of the resulting estimate — which we will denote by fg (a,b) — is known as
the “and”-operation or, for historical reason, a t-norm.

From the meaning of this operation, we can extract its natural properties.
For example, “A and B” means the same as “B and A”. It is therefore reasonable
to require that our estimates for these two equivalent statements coincide, i.e.,
that fy(a,b) = fg(b,a) for all a and b. In mathematical terms, this means that
the “and”-operation should be commutative.

Similarly, since “(A and B) and C” means the same as “A and (B and C)”,
we can conclude that the resulting estimates should coincide, i.e., that we should
have fg(fe(a,b),c) = fe(a, f&(b,c)) for all a, b, and c. In mathematical terms,
this means that the “and”-operation should be associative.

Similar arguments explain that the “and”-operation should be monotonic,
continuous, etc.

There are many possible “and”-operations. There exist many operations
that satisfy all these properties. We need to select the one which best reflects
the expert’s reasoning.

This selection was first done for the historically first medical expert system
MYCIN (see, e.g., [2]), and since then, has been done for many application areas.
Interestingly, in different application areas — and sometimes even in the same
application areas but for different tasks — different “and”-operations are most
adequate.

Comment. The desired most adequate “and”-operation can be determined as
follows:

— for several pairs of statements (A, By), we ask the experts to estimate their
degrees of confidence d(Ay), d(By), and d(Ay & By) in statements Ay, By,
and Ay & By, and then

— we find a function fg(a,b) for which d(Ax & By) ~ fe(d(Ax),d(By)) for
all k.

Why do we need to go beyond traditional “and”-operations. So far,
we have considered two extreme situations. To describe such situations, let us
denote possible basic statements by Si,...,5S,.

— In the first — ideal — situation, we know the expert’s degrees of confidence
in these statements d(S;) and in all possible “and”-combinations of these
statements d(S;, & ... & S;, ).

— The second — more realistic — situation is when we only know the de-
grees of confidence d(S;) in the basic statements. In this case, we esti-
mate our degree of confidence in each “and”-combination S;, & ... & S;,

as fe(d(Sy),--.,d(Si))-

The problem is that in practice, we sometimes have intermediate situa-
tions, when we know the degrees of confidence in some — but not all — “and”-
combinations, and we are interested in estimating the expert’s degree of con-
fidence in other “and”-combinations. For example, in addition to the degrees
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of confidence d(S7), d(S2), and d(S3) in the three basic statements, we may
know the degrees of confidence in all possible pairs d(S; & S2), d(S1 & S3), and
d(S2 & S3), and we want to estimate the degree of confidence d(S; & Sz & S3) in
all three of these statements.

By using the traditional “and”-operation, we can several estimates for this
desired degree, e.g., fg.(d(S1),d(S2& S3)), fe.(d(S1& S2),d(S3)), etc., but they
will be, in general, different — and each of them takes into account some available
information while ignoring other information.

How can we take all the available information into account — and thus come
up with the most adequate estimate? We cannot do this by using the traditional
“and”-operations, we need to go beyond.

This is what we will do in this paper: we will show how such an estimate can
be obtained.

2 Analysis of the Problem

What are subjective probabilities and how they are related to fuzzy
degrees. The ultimate goal of expert’s estimates is to make a decision. The
diagnosis of a medical expert helps decide which treatment to select for a given
patient. The decision of an expert pilot helps decide how, e.g., how to best avoid
the turbulence zone. So, to solve problems related to expert estimates, it makes
sense to recall how exactly these estimates are used in decision making.

Decision theory — see, e.g., [3,6,7,9,11,14] — deals, in particular, with sit-
uations in which a decision maker is uncertain about some possible events FE.
Decision theory provides a natural scale for measuring this uncertainty — namely,
we compare the FE-related lottery

L(FE) defeg get $100 if E, otherwise I get nothing”
with lotteries L(p) in which a person gets $100 with some probability p.

When this probability is equal to 1, i.e., when the person gets $100 uncon-
ditionally, then clearly the lottery L(1) is better; we will denote this situation
by L(F) < L(1). On the other hand, if the probability p is equal to 0, then the
person does not get anything at all, so clearly the lottery L(FE) in which there
is a change to get something is better: L(0) < L(E).

As we increase the probability p from 0 and continue comparing, at some
probability level pg, we will switch from L(p) < L(E) to L(E) < L(p). This
threshold value pg is known as the subjective probability ps(E) of the event E.

Both degree of confidence and subjective probability describe our degree of
belief that the event will happen — i.e., that the corresponding statement is
true. If in two situations, we have the same degree of belief, it is reasonable
to expect that we have the same subjective probabilities and the same degrees
of confidence. In mathematical terms, this means that the degree of confidence
uniquely determines the subjective probability, i.e., that ps(E) = f(d(E)) for
some monotonic function f(d).
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How can we determine the corresponding function f(d)? If we know
the degrees of confidence a and b in statements A and B, then we estimate the
degree of confidence in A& B as fg(a,b).

What if we only know the subjective probabilities ps(A) and ps(B) and we
want to estimate the subjective probability ps(A & B)? In principle, we have
several different probability measures with different values of ps(A & B). Which
of these values should we choose?

The usual approach in probability theory is to take into account that dif-
ferent alternative have different uncertainty — as measured, e.g., by entropy —
the average number of binary (“yes”-“no”) questions that we need to ask to
fully determine the situation. In general if have N alternatives with proba-

bilities Py, ..., Py, then entropy is equal to S = — Z P; - logy(P;); see, e.g.,

[4,11]. For two statements A and B, we have 4 p0581ble alternatives: A& B,
A& —-B, “A& B, and ~A& —-B. Once we know the probabilities p(A), p(B)7
and p(A& B), we can determine the probabilities P; of all these 4 events: in-
deed, we already know the probability P; = p(A & B), we can then determine

=p(A&-B) =p(A) —p(A& B), P3=p(-A&B)=p(B)-p(A&B),

and Py = p(mA&—-B)=1—-p(A& B) —p(A, & —-B) = p(-A& B).

For different values of p(A & B), we get, in general, different values of the entropy:
some are smaller, some are larger. The only thing that we know about this
uncertainty is that it is in some interval [S, S]. We can guarantee that the average
number of binary questions does not exceed S.

If we select a value p(A& B) for which S < S, we then artificially add
certainty which is not there, we kind of cheating by pretending that we have less
uncertainty than possible. To avoid such cheating, it makes sense to select the
value p(A & B) for which S = S, i.e., for which entropy is the largest possible.
This idea is known as the mazimum entropy approach.

For the above case, as one can show, this approach leads to p(A & B) = p(A)-
p(B). In particular, for subjective probabilities, we get ps(A & B) = ps(A)-ps(B).
Taking into account that ps(A4) = f(d(A)) = f(a), ps(B) = f(d ( ) = f(b),
and ps(A& B) = f(d(A& B)) = f(fs(a,b)), we conclude that f(f(a,b)) =
f(a) - f(b), i.e., equivalently, that

fela,b) = f71(f(a) - (b)) (1)

Here f~1(p) denotes the inverse function: f~*(p) is the value d for which f(d) =
.

So, once we empirically determine the “and”-operation fg (a,b), we can then
determine the corresponding function f(d) as the one for which (1) holds.

Is not the formula (1) an additional restriction on possible “and”-
operations? Can such a function f(d) be found for all possible “and”-
operations? From the purely mathematical viewpoint, the formula (1) is indeed
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a limitation: e.g., a popular “and”-operation fg (a,b) = min(a, b) cannot be rep-
resented in this form.

However, from the practical viewpoint, there is no limitation: it is known
(see, e.g., [10]) that for every “and”-operation fg(a,b) and for every € > 0, there
exists an e-close “and”-operation of the type (1). For sufficiently small £ > 0, e-
close operations are practically indistinguishable: hardly an expert can say that
his/her degree of confidence is 0.51 and not 0.52.

Maximum entropy approach is more general than using for “and”-
operations. We have mentioned that the maximum entropy approach can be
used to estimate the probability p(A& B) of an “and”-statement A & B when
all we know are probabilities p(A) and p(B) of the basic statements. However,
the same maximum entropy approach can be — and is — used in many other
situations when we only have partial information about the probabilities. It can
be used to find any missing probability — including a missing probability of an
“and”-combination.

Since there is a natural transformation ps = f(d) from degrees of confidence
d to probabilities ps, we can therefore find the missing degrees as follows:

— first, we transform all known degrees into probabilities;

— then, we use the Maximum Entropy approach to find the missing probabili-
ties;

— finally, we use the inverse function f~!(p) to transform the newly found
probabilities into degrees of confidence.

Let us describe this procedure in precise terms.

3 Resulting Procedure

Preliminary step: Version 1. For some application areas (and for the given
class of problems), we have already determined the “and”-operation fg (a, b) that
most adequately describes the expert reasoning in this area.

In this case, we find a function f(d) for which, for every a and b, we have

f(fela, b)) = f(a) - f(b).
Preliminary step: Version 2. In some application areas, we have not yet
determined the appropriate “and”-operation. In such cases:

— for several pairs of statements (A, By), we ask the experts to estimate their
degrees of confidence d(Ay), d(By), and d(Af & By) in statements Ay, By,
and Ay & By, and then

— we find a function f(d) for which f(d(Ax & By)) =~ f(d(Ax)) - f(d(By)) for
all k.

The corresponding problem. We have several basic statements S, ..., .S,.
For some propositional combinations C,...,C,, of these statements, we have
expert estimates d(C;) of their degree of confidence. We also have another propo-
sitional combination C' for which we do not have the expert’s estimate.
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Based on the available information — i.e., on the values d(C;) — we want to
estimate the expert’s degree of confidence d(C) in the statement C.

Example 1. The traditional “and”-operation corresponds to the case when
n=2 m=2 C; =51, Cy =95 and C = S; & S5. This is the case for which
the traditional fuzzy “and”-operation provides a reasonable solution

d(C) = fe(d(S1),d(S2)) = 1 (f(d(S1), f(d(S2))).

Example 2. Here is an example when we need to go beyond the traditional
“and”-operation: n =3, m =6,C; = 51, Cy =55, C3 =53, Cy = 51 & S5, C5 =
S1& S3, Cg = S92 & S3, and C = S & S5 & S3. We know the values d; def d(S;)

and d;; def d(S; & S;), and we want to estimate the degree d def d(S1 & S2 & S3).

Solution.

— first, we transform all known degrees d(C;) into subjective probabilities, by
computing ps(C;) = f(d(Cs));

— then, among all the probability distributions with given values ps(C;),
we find the one for which the entropy is the largest possible, and for
this maximum-entropy distribution, we determine the (subjective) proba-
bility ps(C);

— finally, we transform this probability back into degrees by computing d(C) =
JHps(C)).

Comment. For n statements, to get a full probability distribution, we need to
know the probability of all 2™ atomic combinations, i.e., combinations of the form
Sit & ... & Sir, where ¢; is either + or —, S;' means S;, and S; means —5;.
Thus, the entropy is — > ps(S{* & ... & Sr)-log,(ps(S7t & ... & SEm)).
13

Elyeesy n

Example. In the second example, first, we compute the probabilities p; =
ps(Si) = f(d;) and p;; = ps(S; & S;) = f(dij).

Once we know the subjective probability p of the desired statement
S1 & S5 & S5, we can then determine the (subjective) probabilities of all 8 atomic
statements:

ps(S1& 52 & S3) = p; ps(S1 & S2 & ~83) = pr1a — p;
ps(S1 & 282 & S3) = p13 — p; ps(=51 & 52 & S3) = pa3 — p;
ps(S1& —82 & =S3) = p1 — p12 — p13 + p;
ps(—S1& S2 & =S3) = pa — p12 — p23 + p;
ps(—51& =52 & S3) = p3 — p13 — paz + p;
ps(=S1& 282 & —S3) =1 — p1 — p2 — p3 + P12 + P13 + P2z — p-
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The value p can be determined by maximizing the corresponding entropy.

Comment. In the simplified case when p; = ps = ps and p12 = p13 = pos, the
expression for the entropy has the form

—p -logy(p) — 3(pij — p) -1oga(pij — p) — 3(Pi — 2pij + p) - loga(pi — 2pij + p)—

(1 —3p+3pi; —p) - logy(1 — 3p + 3pi; — p).

References

10.

11.

12.

13.

14.
15.

Belohlavek, R., Dauben, J. W., Klir, G. J.: Fuzzy logic and mathematics: a histor-
ical perspective. Oxford University Press, New York (2017)

. Buchanan, B. G., Shortliffe, E. H.: Rule-based expert systems: the mycin exper-

iments of the stanford heuristic programming project. Addison-Wesley, Reading,
Massachusetts (1984)

Fishburn, P. C.: Utility Theory for Decision Making. John Wiley & Sons Inc., New
York (1969)

Jaynes, E. T., Bretthorst, G. L. (2003) Probability theory: the logic of science.
Cambridge University Press, Cambridge, UK (2003)

Klir, G., Yuan, B.: Fuzzy sets and fuzzy logic. Prentice Hall, Upper Saddle River,
New Jersey (1995)

Kreinovich, V.: Decision making under interval uncertainty (and beyond)”, In:
Guo. P., Pedrycz, W. (eds.) Human-centric decision-making models for social sci-
ences. Springer Verlag (2014) pp. 163-193

Luce, R. D., Raiffa, R.: Games and Decisions: Introduction and Critical Survey.
Dover, New York (1989)

Mendel, J. M.: Uncertain rule-based fuzzy systems: introduction and new direc-
tions. Springer, Cham, Switzerland (2017)

Nguyen, H. T., Kosheleva, O., Kreinovich, V.: Decision making beyond Arrow’s
‘impossibility theorem’, with the analysis of effects of collusion and mutual attrac-
tion. International Journal of Intelligent Systems 24(1), 27-47 (2009)

Nguyen, H. T., Kreinovich, V., Wojciechowski, P.: Strict Archimedean t-norms
and t-conorms as universal approximators. International Journal of Approximate
Reasoning 18(3-4), 239-249 (1998)

Nguyen, H. T., Kreinovich, V., Wu, B., Xiang, G.: Computing statistics under
interval and fuzzy uncertainty. Springer Verlag, Berlin, Heidelberg (2012)
Nguyen, H. T., Walker, C. L., Walker, E. A.: A first course in fuzzy logic. Chapman
and Hall/CRC, Boca Raton, Florida (2019)

Novaék, V., Perfilieva, I., Mockot, J.: Mathematical principles of fuzzy logic. Kluwer,
Boston, Dordrecht (1999)

Raiffa, H.: Decision analysis. McGraw-Hill, Columbus, Ohio (1997)

Zadeh, L. A.: Fuzzy sets. Information and Control 8, 338-353 (1965)



