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Abstract

A recent book provide examples that a new
class of probability distributions and mem-
bership functions – called kappa-regression
distributions and membership functions –
leads to better data processing results than
using previously known classes. In this pa-
per, we provide a theoretical explanation for
this empirical success – namely, we show
that these distributions are the only ones that
satisfy reasonable invariance requirements.
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1 Formulation of the Problem

Empirical facts. Recent results have shown (see [2]
and references therein) that in many practical situa-
tions, probability distributions with the cumulative dis-
tribution of the type

F(x) = Prob(X ≤ x) =
1

1+C ·
(

b− x
x−a

)λ
, (1)

known as kappa-regression distributions, provide the
best description of the data and the best data processing
results.

Similarly, fuzzy processing that uses the membership
functions

µ(x) =
1

1+C ·
(

b− x
x−a

)λ
(2)

leads, in many practical situations, to very good results
– better than other tested membership functions.

Challenge. How can we explain these empirical re-
sults?

In this paper, we provide an explanation for these re-
sults, an explanation based on first principles.

2 Let Us Start with the Known Limit
Case

A known limit case. While the kappa-regression-
distribution itself is new, in the limit, it coincides with
several known probability distributions; see [2]. One
of such limit distributions is the logistic distribution

F(x) =
1

1+C · exp(−k · x)
, (3)

which is also known to lead to many useful results.

So, before we explain why the general case of the
kappa-regression-distribution is so successful, let us
first explain why this limit case has been very success-
ful.

Idea of symmetry. In order to explain why logistic
distribution is successful in describing real-life phe-
nomena, let us recall how real-life phenomena are de-
scribed and explained in the first place, what are the
fundamental ideas behind these explanations.

Modern science – especially physics – has been very
successful, we can predict many events. But what is
the general basis for all these predictions? We observe
that the Sun goes up day after day, and we conclude
that in the similar situations, the Sun will go up again.
We observe, at different locations on the Earth, that if
you drop a pen, it will fall with the acceleration of 9.81
m/sec2, and we conclude that in similar situations, it
will fall down with the same acceleration. We observe,
in many cases, that mechanical bodies follow Newton’s
laws, and we conclude that in the similar situations, the
same laws will be observed.

In all these cases, we conclude that when we change



a situation to a similar one – e.g., by moving to a dif-
ferent location on Earth or to a different day, etc. –
the processes will remain similar. This idea that many
physical properties do not change if we perform cer-
tain transformations is known as it symmetry. Symme-
tries are indeed one of the fundamental ideas of modern
physics, to the extent that many new theories – starting
with theory of quarks – are proposed not by writing
down differential equations, but by describing the cor-
responding symmetries; see, e.g., [3, 8].

What are the simplest symmetries? Some symme-
tries – e.g., the ones used in quark theory – are rather
complicated. Let us start with the simplest possible
symmetries.

These symmetries are related to the fact that when we
write equations, we operate with numerical values of
the physical quantities, but to describe physical quanti-
ties by numbers, we need to select a measuring unit
and a starting point. For example, we can measure
time starting with Year 0 – as in the commonly used
calendar – or with any other moment of time; after the
French revolution, the new calendar started with the
year of the revolution as the first year. We can also
change a measuring unit – e.g., count days or months
instead of years.

In general, if you replace the original measuring unit
with a new unit which is c times smaller, then all nu-
merical values are multiplied by c: x→ c ·x. For exam-
ple, if when measuring lengths we replace meters with
centimeters, all numerical values will be multiplied by
100: 2 m social distance will become 2 ·100 = 200 cm.

Definition 1. By a scaling, we mean a transformation
(function) f (x) = c · x for some c > 0.

Similarly, if we replace the original starting point with
the one which is x0 units earlier, then all numerical val-
ues increase by x0: x→ x+ x0.

Definition 2. By a shift, we mean a transformation
f (x) = x+ x0 for some x0.

In many physical situations, there is no preferred start-
ing point, so we expect that the processes remain simi-
lar if we replace change the starting point, i.e., if we re-
place all numerical values x with shifted values x+ x0.
Similarly, in many physical situations, there is no pre-
ferred measuring unit, so so we expect that the pro-
cesses remain similar if we replace the measuring unit,
i.e., if we replace all numerical values x with re-scaled
values c · x.

How can we apply these ideas to probability distri-
butions? Of course, if we change the units of one of
the quantities, then, to preserve the same equations, we
need to accordingly change the units of related quanti-

ties. For example, if we start with the formula d = v · t
that the distance is velocity times time, and we change
the unit for time from hours to seconds, then, to pre-
serve the formula, we need to corresponding change
the units for velocity: e.g., from km/h to km/sec.

In probability theory, there is a natural way to change
probabilities: the Bayes formula, according to which if
we have a new observation E, then the previous prob-
ability P0(H) of a hypothesis H changes to the new
value

P(H |E) = P(E |H) ·P0(H)

P(E |H) ·P0(H)+P(E |¬H) ·P0(¬H)
=

P(E |H) ·P0(H)

P(E |H) ·P0(H)+P(E |¬H) · (1−P0(H))
=

P0(H)

P0(H)+(1− r) · (1−P0(H)
, (4)

where we denoted

r def
=

P(E |¬H)

P(E |H)
; (5)

see, e.g., [4, 7].

So, a natural idea is to require that if we apply a rea-
sonable transformation to x – e.g., change the starting
point or change the measuring unit – then the proba-
bility distribution will change according to the Bayes
formula (4).

Definition 3. We say that cumulative distribution func-
tions F(x) and G(x) are equivalent if for some real
number r, we have:

G(x) =
F(x)

F(x)+(1− r) · (1−F(x))
.

Definition 4. Let f (x) be a transformation. We say
that a cumulative distribution function F(x) is invari-
ant with respect to f (or, f -invariant, for short) if the
functions F( f (x)) and F(x) are equivalent, i.e., if for
some real number r > 0, we have

F( f (x)) =
F(x)

F(x)+(1− r) · (1−F(x))
.

What probability distributions satisfy this symme-
try requirement? Let us analyze what are the proba-
bility distributions that satisfy this requirement.

Proposition 1. For each cumulative distribution func-
tion F(x), the following two conditions are equivalent
to each other:

• F(x) is invariant with respect to all shifts;



• F(x) is a logistic distribution, i.e., is described by
the formula (3).

Proof. It is straightforward to prove that every logistic
distribution is shift-invariant. Let us prove that every
shift-invariant probability distribution is logistic.

In our proof, we will use the fact that the Bayes for-
mula becomes even simpler if instead of probabilities
P, we consider the odds

O def
=

P
1−P

. (6)

Indeed, from the above formula

P′ =
P

P+ r · (1−P)
,

we conclude that

1−P′ =
r · (1−P)

P+ r · (1−P)
,

and thus, that

O′ =
P′

1−P′
=

P
r · (1−P)

=
1
r
· P

1−P
= s ·O, (7)

where we denoted s def
=

1
r
.

In these terms, the fact that the shift x→ x+ x0 should
lead to a Bayes-type transformation of the cumulative
distribution function F(x) means that for the corre-
sponding odds O(x) and O(x+ x0), we must have

O(x+ x0) = s(x0) ·O(x), (8)

for some constant s – which is, in general, different for
different shifts.

Each cumulative distribution function F(x) is mono-
tonic and thus, measurable. Thus, the odds function
is also measurable. It is known (see, e.g., [1]) that
all measurable solutions of the functional equation (8)
have the form

O(x) = c · exp(k · x) (9)

for some values c and k.

It is known how to go back from odds to probabilities:
from

O =
P

1−P
=

1
1
P
−1

,

we conclude that

1
P
−1 =

1
O
,

hence
1
P
= 1+

1
O

and

P =
1

1+
1
O

. (10)

Thus, in our case, we have

P(x) =
1

1+
1

O(x)

=
1

1+C · exp(−k · x)
, (11)

where C def
=

1
c

, i.e., exactly the logistic distribution.

The proposition is proven.

Conclusions of this section. In this section, we have
shown that a simple symmetry – namely, invariance
with respect to shift – leads to the logistic distribution,
and thus, explains why this distribution has been so
successful in practice – because it corresponds to the
frequent requirement that the physical processes do not
change if we simply change the starting point for mea-
suring the corresponding physical quantity.

3 What About the Fuzzy Case?

What about the fuzzy case? According to [2], logistic
expression works well not only for the probability dis-
tributions, but also for membership functions as well.
For membership functions, the above explanation does
not work – this explanation is based on the Bayes for-
mula, and this formula is not applicable to membership
functions. So, to explain the success of logistic mem-
bership functions, we need to provide another explana-
tion.

Idea. To come up with such an explanation, let us re-
call that one of the possible ways to get membership
degrees is to ask experts. If m out of n experts think
that the given statement is true, we assign to it the de-
gree of confidence m/n. For example, we can say that
a person of a certain age is young to a degree 0.7 if
70% of the experts consider this person young.

Resulting transformations. For complex statements
– statements that require true expertise – we want to
ask top experts, of whose opinion we are most con-
fident. Suppose that out of n top experts, m thought
that the given statement is true; then we assign, to this
statement, the degree of confidence µ = m/n.

The problem is that in many practical situations, there
are very few top experts: the number n is small. In
this case, we have a very limited number of possible
degrees. For example, when n = 5, we only have 6



possible values: 0, 1/5, 2/5, 3/5, 4/5, and 1. The only
way to make more meaningful distinction is to use a
larger value of n, i.e., to ask more experts.

However, in the presence of the top experts, other not-
so-top experts may be either silent, or simply follow
the opinion of their peers. If we ask n′ more experts
and the new experts are silent, then the new degree of
confidence is µ ′ = m/(n+n′). In terms of the original
degree of confidence µ = m/n, we have m = µ ·n and

thus, µ ′ = c ·µ , where c def
= n/(n+n′).

If the new experts follow the majority of top experts –
and if this majority confirms our statement – then the
new degree of confidence is µ ′ = (m+n′)/(n+n′). In
terms of the original degree of confidence µ , we have
µ ′ = c ·µ +a, where a def

= n′/(n+n′).

In both cases, we have a linear transformation µ→ µ ′.
A similar linear transformation occurs if some of the
new experts remain silent, and some follow the ma-
jority of top experts. So, linear transformations make
sense for fuzzy degrees as well.

Beyond linear transformations. In principle, not all
functions are linear – for example, the Bayes formula
describes a non-linear transformation. So let us look
for a general class of transformations, i.e., functions
from real line to real line, with respect to which physi-
cal properties can be invariant.

Clearly, if the properties do not change when we apply
a transformation x′ = f (x), and do not change if we
then apply the transformation x′′ = g(x′), this means
that the whole transformation from x to x′′ = g(x′) =
g( f (x)) – which is the composition of two original
transformations – also does not change the properties.
Thus, the class of possible transformations must be
closed under composition.

Similarly, if the physical properties do not change
when we go from x to y = f (x), this means that the
transition back, from y to x = f−1(y), where f−1 de-
notes the inverse function, also preserves all physical
properties. So, the class of possible transformation
must contain the inverse transformation.

In mathematical terms, this means that the class of all
possible transformations much be a group. Also, we
want this to be constructive, we want to be able to
simulate such transformations on a computer. At any
given moment of time, a computer can only store and
use finitely many parameters. Thus, elements of the
desired transformation group must be uniquely deter-
mined by the values of finitely many parameters. In
mathematical terms, this means that the correspond-
ing group must be finite-dimensional. It is known that
under reasonable conditions, any finite-dimensional

transformation group that contains all linear transfor-
mation contains only fractional-linear transformations,
i.e., transformations of the type [5, 6, 9, 10], etc.

f (x) =
A+B · x
C+D · x

. (11)

So, we will consider fractional-linear transformations.

Comment. In particular, for D = 0, we get linear trans-
formations.

Definition 5. By a reasonable transformation, we mean
a fractional-linear transformation, i.e., a transforma-
tion of type (11).

Which reasonable transformations preserve the in-
terval [0,1]? Possible degrees of confidence form the
interval [0,1]. It is therefore reasonable to look for
transformations that preserve this intervals, i.e., that
map [0,1] exactly into [0,1].

Definition 6. Let a < b be real numbers. We say that a
transformation f (x) preserves the interval [a,b] if the
range f ([a,b]) = { f (x) : x ∈ [a,b]} of this transforma-
tion on the interval [a,b] is equal to this same interval:
f ([a,b]) = [a,b].

Proposition 2. If a reasonable transformation f (x)
preserves the interval [0,1], then this transformation
has the form

f (x) =
x

x+ r · (1− x)
, (12)

for some real number r.

Proof. The requirement that the interval [0,1] is in-
variant under the transformation (12) implies that we
should have f (0) = 0 and f (1) = 1. Substituting x = 0
into the formula (12), we get A = 0 and thus,

f (x) =
B · x

C+D · x
. (13)

To simplify this expression, we can divide both the nu-
merator and the denominator of this fraction by B and
get

f (x) =
x

C0 +D0 · x
, (14)

where C0
def
=

C
B

and D0
def
=

D
B

. Now, the condition that

f (1) = 1 leads to C0 +D0 = 1, i.e., to D0 = 1−C0 and

x→ f (x) =
x

x+C0 · (1− x)
. (15)

The proposition is proven.

Now, we can formulate the same invariance ideas as
for cumulative distribution functions.



Definition 7. We say that the membership functions
µ(x) and ν(x) are equivalent if for some real number
r, we have:

ν(x) =
µ(x)

µ(x)+(1− r) · (1−µ(x))
.

Definition 8. Let f (x) be a transformation. We say that
a membership function µ(x) is invariant with respect
to f (or, f -invariant, for short) if the functions µ( f (x))
and µ(x) are equivalent, i.e., if for some real number
r > 0, we have

µ( f (x)) =
µ(x)

µ(x)+(1− r) · (1−µ(x))
.

Proposition 3. For each membership function µ(x),
the following two conditions are equivalent to each
other:

• µ(x) is invariant with respect to all shifts;

• µ(x) is a logistic distribution, i.e., is described by
the formula

µ(x) =
1

1+C · exp(−k · x)
. (16)

Proof. From the mathematical viewpoint, this is ex-
actly Proposition 1 which we have already proven.

4 Another Special Case

Idea. In the previous sections, we showed that invari-
ance with respect to changing the starting point leads to
the logistic distribution (and logistic membership func-
tion). A natural question is: what if instead, we require
that the probability distribution be invariant with re-
spect to changing the measuring unit, i.e., with respect
to the scaling transformation x→ c · x.

Proposition 4. For each cumulative distribution func-
tion F(x), the following two conditions are equivalent
to each other:

• F(x) is invariant with respect to all scalings;

• F(x) is described by the formula

µ(x) =
1

1+C · x−k . (17)

Proposition 5. For each membership function µ(x),
the following two conditions are equivalent to each
other:

• µ(x) is invariant with respect to all scalings;

• µ(x) is described by the formula

µ(x) =
1

1+C · x−k . (18)

Comment. The resulting formulas (17) and (18) form
yet another limit case of the kappa-regression formulas
(1) and (2).

Proof of Propositions 4 and 5. From the mathemati-
cal viewpoint, the probabilistic and fuzzy formulations
are identical. so it is sufficient to prove this result in the
probabilistic case. In this case, similar to the case of
shift, we conclude that the original odds function O(x)
and the re-scaled function O(c · x) must be related by
the Bayes formula

O(c · x) = s(c) ·O(x). (19)

The function F(x) is monotonic hence measurable,
thus the odds function is also measurable, and it is
known (see, e.g., [1]) that all measurable solutions of
the functional equation (12) have the form

O(x) = c · xk (20)

for some values c and k. So, by using the formula (10),
we can go from the odds to the probability distribution,
and get

P(x) =
1

1+
1

O(x)

=
1

1+C · x−k , (21)

where C def
=

1
c

.

The proposition is proven.

5 Towards the General Case

Analysis of the problem. The general kappa-
regression-distribution is concentrated, with probabil-
ity 1, on the interval (a,b). This means that in this
case, we cannot apply shift-invariance – since there is
a natural starting value a, and we cannot apply scale-
invariance – since there is a natural measuring unit,
e.g., the difference b−a. Since we cannot use the usual
linear transformations x→ x+ x0 and x→ c · x, if we
want to use symmetries, we need to use some more
general transformations.

What are more general transformations? We have
already discussed the need to go beyond linear trans-
formations in one of the previous sections, and we con-
cluded that reasonable requirements lead to fractional-
linear transformations – which we then called reason-
able. Now, we are ready to formulate our main results.



Proposition 6. Let a < b For each cumulative distri-
bution function F(x), the following two conditions are
equivalent to each other:

• F(x) is invariant with respect to all reasonable
transformations that preserve the interval [a,b];

• F(x) is a kappa-regression distribution, i.e., it is
described by the formula (1).

Proposition 7. Let a < b. For each membership func-
tion µ(x), the following two conditions are equivalent
to each other:

• µ(x) is invariant with respect to all reasonable
transformations that preserve the interval [a,b];

• µ(x) is a kappa-regression membership function,
i.e., it is described by the formula (2).

Proof. The general interval [a,b] can be easily reduced
to the interval [0,1] by an appropriate linear transfor-
mation. Thus, in the following derivation, it is suffi-
cient to consider the case when a = 0 and b = 1.

Similar to the previous cases, without losing gener-
ality, we can consider only the probabilistic case. In
this case, the requirement is that the distribution F(x)
is equivalent to F( f (x)) for all reasonable transforma-
tions that preserve the interval [0,1]. We have shown
that these transformations have the form (15).

Similar to the Bayes case, we can show that for the
expression

T (x) def
=

x
1− x

, (22)

which is similar to the expression for odds, the trans-

formation (15) leads to T ( f (x)) = c ·T (x), for c def
=

1
k

.

Thus, for the auxiliary function G(z) def
= F(T−1(z)), we

conclude that the distributions G(z) and G(c · z) are
equivalent to teach other for all c > 0. We already
know, from Proposition 4, that in this case, the aux-
iliary function G(z) is equal to

G(z) =
1

1+C · z−k .

Thus, for F(x) = G(T (x)), we get

F(x) =
1

1+C ·T (x)−k =
1

1+C ·
(

1− x
x

)k ,

which is exactly the kappa-regression-expression for
a = 0 and b = 1. A similar proof can be repeated for
any a < b.

The proposition is proven.

Conclusion. We have explained the efficiency of
kappa-regression distributions and kappa-regression
membership functions – they are the only ones which
satisfy the reasonable invariance conditions.
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