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Abstract

In many practical situations, users describe
their preferences in imprecise (fuzzy) terms.
In such situations, fuzzy techniques are a
natural way to describe these preferences in
precise terms.

Of course, this description is only an approx-
imation to the ideal decision making that a
person would perform if we took time to
elicit his/her exact preferences. How accu-
rate is this approximation? When can fuzzy
decision making – potentially – describe the
exact decision making, and when there is a
limit to the accuracy of fuzzy approxima-
tions?

In this paper, we show that decision mak-
ing can be precisely described in fuzzy terms
if and only if different parameters describ-
ing the alternatives are independent – in the
sense that if for two alternatives, all other pa-
rameters are the same, then the preference
between these two alternatives depends only
on the differing values and doe not depend
on the values of all other parameters.
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1 Formulation of the Problem

Fuzzy decision making: a brief reminder. Most of
the time, when people make decisions, they do not for-
mulate their criteria in precise terms. Instead, they for-
mulate them by using imprecise (fuzzy) words from
natural language.

For example, when you ask a person looking for a
house what exactly he or she wants, this person will
probably reply that he/she wants a house which is:

• located in a good neighborhood,

• reasonably large,

• not too expensive,

• not far away from the stores and entertainment
district, etc.

All these terms – good neighborhood, reasonably
large, etc. are imprecise.

A natural way to describe these criteria in precise terms
is to use fuzzy techniques – techniques designed by
Lotfi Zadeh specifically for translating words from nat-
ural language into precise, computer-understandable
terms; see, e.g., [1, 4, 8, 12, 13, 15].

According to these techniques:

• First, for each criteria i, we design a membership
function µi(xi) that describes, for each possible
house x, the degree – on the scale from 0 to 1
– to which the characteristic xi corresponding to
this criterion – cost, size, etc. – satisfies the i-th
criterion.

• Once we have the degrees µ1(x1), . . . , µn(xn) cor-
responding to all n criteria, we then use an appro-
priate “and”-operation (t-norm) f&(a,b) to esti-
mate the degree µ(x) to which all n criteria are
satisfied as

µ(x) = f&(µ1(x1), . . . ,µn(xn)). (1)

• After that, a reasonable idea is to select the alter-
native x for which this overall degree of satisfac-
tion µ(x) is the largest possible.

This procedure is, of course, an approximation to
the ideal exact decision making. Of course, every
time we use imprecise words, what we get is an ap-
proximate description – in the case of decision making,
it is an approximate description of our preferences.



There is a whole science of decision making that de-
scribed how to elicit exact preferences and make exact
decisions – we will recall its main ideas in the next
section. Going ahead, according to decision theory, we
should maximize the expected value of a special func-
tion called utility u(x) that describes our preferences.

How accurately does fuzzy decision making ap-
proximate the exact one? A natural question is: how
accurately does fuzzy decision making approximate
the exact one? When can the exact decision making
approximated by fuzzy one with any given accuracy,
and when it cannot be thus approximated?

This is what we study in this paper. As a result of this
study, we provide a clear answer to this question.

2 Decision Theory: A Brief Reminder

What we do in this section. In this section, we pro-
vide a brief description of the traditional decision the-
ory; for details, see, e.g., [2, 3, 6, 7, 9, 10, 14].

Utility: the main notion of decision theory. Decision
theory describes our preferences in precise numerical
terms. Its main idea lies in the fact that if we select two
alternatives:

• a very bad alternative A− which is clearly worse
than anything that we will actually encounter, and

• a very good alternative A+ which is clearly better
than anything that we will actually encounter,

then we can have a natural numerical scale by consid-
ering lotteries L(p) in which we get:

• the very good alternative A+ with probability p,
and

• the very bad alternative A− with the remaining
probability 1− p.

Clearly, the larger the probability of the very good al-
ternative A+, the better the lottery.

For each actual alternative A, if the probability p is
small, then the lottery L(p) is close to A− and is, thus,
worse than A; we will denote it by L(p)< A.

On the other hand, if the probability p is close to 1,
then the lottery L(p) is close to A+ and is, thus, better
than A: A < L(p).

If we assume that the person has exact preferences, i.e.,
he/she can always decide which of the two alternatives
is better for him/her, then for each p, we have either
L(p) < A or A < L(p) (or A ∼ L(p) – meaning that

to this person, the alternative A and the lottery L(p)
have equal value). Under this assumption, there is a
threshold value u of the probability such that:

• for each probability p for which p < u, we have

L(p)< A, and

• for each probability p for which u < p, we have

A < L(p).

This threshold value is known as the utility of the alter-
native A.

By definition of the utility, for each ε > 0, we have

L(u− ε)< A < L(u+ ε).

For very small ε , we do not feel the difference between
lotteries corresponding to probabilities u, u− ε , and
u+ ε . Thus, we can say that from the practical view-
point, the alternative A is actually equivalent to the lot-
tery L(u). We will denote this by A≡ L(u).

Which alternative should we select? As we have
mentioned, each alternative Ai is equivalent to the lot-
tery L(ui), where ui is the utility of this alternative.
Thus, comparing alternatives is equivalent to compar-
ing the corresponding lotteries L(ui).

We have also mentioned that when we compare sev-
eral lotteries L(p), then the larger the probability of
the very good alternative A+, the better. Thus, we have
to select the alternative Ai for which the utility value ui
is the largest.

Why expected utility. One of the consequences of the
above definition of utility is that in the case of uncer-
tainty, we need to maximize the expected utility. Some
folks – who are not very familiar with decision theory
– mistakenly think that the maximization of expected
utility is na additional (and not-well-justified) postu-
late, but it is not, it is a consequence of utility’s defini-
tion.

Indeed, suppose that, as a result of some action a, we
get:

• an alternative A1 with probability p1,

• an alternative A2 with probability p2,

• . . . , and

• an alternative Am with probability pm.

What is the utility of this action? As we have men-
tioned, each alternative Ai is equivalent to a lottery in
which we get:



• the very good alternative A+ with probability
equal to the utility ui of this alternative, and

• the very bad alternative A− with the remaining
probability 1−ui.

Thus, the whole action a is equivalent to the 2-stage
lottery, in which:

• first, we select an alternative, so that each alterna-
tive Ai is selected with probability pi, and

• then, depending on which alternative Ai we se-
lected, we select A+ with probability ui and A−
with probability 1−ui.

As a result of this 2-stage lottery, we get either A+ or
A−. By considering all n possible ways to get A+, in
each of which we get A+ with the probability pi ·ui, we
conclude that the overall probability of selecting A+ is
equal to the sum of these values, i.e., to

u def
= p1 ·u1 + . . .+ pm ·um. (2)

Thus, the action is equivalent to the lottery in which we
get A+ with probability u and A− with the remaining
probability. By definition of utility, this means that the
action has utility u.

And it so happens that the expression (2) – that de-
scribes this utility – is actually the expected value of
the utility ui. So, the principle of maximizing the ex-
pected utility indeed follows from the definition of util-
ity.

3 So When Can Exact Decision Be
Described in Fuzzy Terms?

The problem: reminder. Now that we recalled the
traditional decision theory, let us go back to the origi-
nal question.

In general decision theory, when we select an alter-
native x characterized by values x1, . . . ,xn, the recom-
mendation is to select the alternative for which the util-
ity u(x) = u(x1, . . . ,xn) is the largest possible.

In fuzzy decisions, we select the alternative for which
the expression (1) attains its largest possible value.
When is such a representation possible for a given util-
ity function – i.e., for the given preference relation?

Let us reformulate fuzzy decision making in utility
terms. To be able to compare the two approaches, let
us perform some reformulations. Specifically, we re-
formulate the fuzzy decision making in terms which
are closer to utilities.

To do this, we can take into account that:

• while, in principle, there exist many different
“and”-operations (t-norms),

• it is known (see, e.g., [11]) that for every t-norm
f&(a,b) and for every ε > 0, there exists an ε-
close t-norm g(a,b) of the type

g(a,b) = f−1( f (a) · f (b)), (3)

for some strictly increasing function f (x); here,
f−1(x) denotes the inverse function.

Similarly to what we argued in the previous section,
we can argue that for a sufficiently small ε , we cannot
actually distinguish between ε-close degrees of con-
fidence. Thus, from the practical viewpoint, we can
safely assume that the t-norm actually has the form (3).

For such a t-norm, the formula (1) turns into

g(µ1(x1), . . . ,µn(xn)) =

f−1( f (µ1(x1)) · . . . · f (µn(xn))). (4)

Since the function f (x) is strictly increasing, maximiz-
ing the expression (4) is equivalent to maximizing the
result of applying the function f (x) to this value, i.e.,
to maximizing the expression

f (µ1(x1)) · . . . · f (µn(xn)). (5)

Since logarithm is also a strictly increasing function,
maximizing the product (5) is equivalent to maximiz-
ing its logarithm. Since the logarithm of the product
is equal to the sum of the logarithms, the logarithm of
the expression (5) can be described as the problem of
maximizing the sum

u1(x1)+ . . .+un(xn), (6)

where we denoted ui(xi)
def
= ln( f (µi(xi))).

Vice versa, if our decision problem can be described
in the form (6), we can take, e.g., f (x) = x (then
f&(a,b) = a ·b), and µi(xi) =Ci ·exp(ui(xi)), for some
normalization constant Ci – to make sure that all the
values do not exceed 1. One can easily see that
for these “and”-operation and membership functions,
maximizing the expression (1) is indeed equivalent to
maximizing the formula (5).

Now the problem has been reformulated, so we can
answer the original question. Now, the original prob-
lem – when decision making can be described in fuzzy
terms – has been reformulated in precise terms:

When is a decision problem characterized by a utility
function u(x1, . . . ,xn) equivalent to maximizing the

sum (5) of expressions describing the utilities of
different parameters xi characterizing the alternative?



Interestingly, this problem has already been solved in
utility theory; see, e.g., [3, 5]. Namely, one can easily
check that if we want to maximize the expression (5),
then our preferences between different parameters are
independent in the following sense: if we have two dif-
ferent situations differing only by the values of xi = x′i,
then which alternative is better depends only on the re-
lation between xi and x′i and does not depend on the
values of the other parameters: if

(x1, . . . ,xi−1,xi,xi+1, . . . ,xn)<

(x1, . . . ,xi−1,x′i,xi+1, . . . ,xn)

for some values

x1, . . . ,xi−1,xi+1, . . . ,xn,

then for any other values

x′1, . . . ,x
′
i−1,x

′
i+1, . . . ,x

′
n,

we will have the similar relation:

(x′1, . . . ,x
′
i−1,xi,x′i+1, . . . ,x

′
n)<

(x′1, . . . ,x
′
i−1,x

′
i,x
′
i+1, . . . ,x

′
n).

This is true not only when we have exact values of the
parameters, the same property holds if we only know
the probability distributions on the set of parameters.

It has been proven that this independence property
uniquely characterizes the possibility of representation
(5); namely:

• if the above independence property holds,

• then the maximized utility can be represented as
the sum (5) of the terms ui(xi) each depending
only on the corresponding parameter.

So, we get the following answer to our questions.

4 Conclusion

A decision making problem, in which we compare
alternatives x characterized by several parameters
x1, . . . ,xn, can be represented in the equivalent form (1)
corresponding to fuzzy decision making if and only if
these parameters are independent – in the formal sense
described in the previous section.

Crudely speaking, it means that when for two alter-
natives, all other alternatives are the same, our prefer-
ence between these two alternatives deoends only on
the values of the differing parameter and does not de-
pend on the values of all other parameters.

• If this independence condition is satisfied, then
fuzzy decision making can approximate the ac-
tual decision making as accurately as we want –
in can even exactly represent the actual decision
making.

• On the other hand, if the independence condition
is not satisfied, then there is a limit on how accu-
rately fuzzy decision making can approximate the
actual decision making.
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