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Abstract: One of the most effective image processing techniques is the use of convolutional neural1

networks, where we combine intensity values at grid points in the vicinity of each point. To speed2

up computations, researchers have developed a dilated version of this technique, in which only3

some points are processed. It turns out that the most efficient case is when we select points from a4

sub-grid. In this paper, we explain this empirical efficiency proving that the sub-grid is indeed5

optimal – in some reasonable sense. To be more precise, we prove that all reasonable optimality6

criteria, the optimal subset of the original grid is either a sub-grid, or a sub-grid-like set.7

Keywords: convolutional neural networks; dilated neural networks; optimality8

1. Formulation of the Problem9

Convolutional neural networks: a brief reminder. At present, one of the most efficient10

image processing techniques is a convolutional neural network; see, e.g., [1]. In each step11

of the corresponding data processing, we combine intensity values corresponding to12

several neighboring points (pixels) – i.e., to the values at a rectangular grid restricted by13

some neighborhood of a given point:14
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15

Usually, the maximum of these intensities is computed and assigned to the central point.16

17

Dilated convolutional neural networks: main idea. One of the features of neural18

networks – as well as of many other machine learning tools – is that they often take19
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a long time to train. This is not surprising: we humans – whose brain processes are,20

in effect, simulated in neural networks – are not that fast to learn either. From this21

viewpoint, it is desirable to decrease the computational time needed for each training22

cycle.23

With respect to convolutional neural networks, a natural speed-up idea is to take24

into account that the more values we process, the longer this processing takes. Thus,25

to speed up computations, a reasonable idea is not to process all the values from the26

grid – within the given neighborhood of a central point – but only some of these values.27

This indeed has indeed been successful. The resulting networks are known as dilated28

convolutional neural networks, since skipping some points is kind of equivalent to29

extending (dilating) the distance between the remaining points; see, e.g., [3,5,6].30

Dilated convolutional neural networks: specifics. In principle, we could skip different31

points – e.g., points are at odd squared distance to the center, or points selected by some32

other criterion. Interestingly, the most effective results are obtained if we select a sub-grid33

– e.g., if we denote the central point by (0, 0), the set of all the points (x, y) for which both34

x and y divisible by 2:35
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or the set of all the points for which both x and y are divisible by 3, or by 4, etc. [5].37

But why? A natural questions are:38

• Why a sub-grid works the best? Why not some other subset of the original grid?39

• And maybe there are other subsets that we missed which are of equal quality – or40

even better than the sub-grid?41

What we do in this paper. In this paper, we show that the sub-grids are – in some42

reasonable sense – optimal. We also show that some other sets (similar to sub-grids) may43

also be optimal.44

We will not just prove that they are optimal with respect to one possible optimality45

criterion, we will show that they are optimal with respect to all reasonable optimality46

criteria.47

Comment. Similar idea were used to explain other empirically successful features of48

neural networks [2] and of other algorithms and heuristics [4].49

2. Towards Formulating the Problem in Precise Terms50

What are we looking for? We start with the original grid, i.e., with the set Z×Z of all51

the points (x, y) for which both coordinates x and y are integers: x, y ∈ Z.52
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We are looking for a non-empty subset of this set Z×Z.53

There should be convolution. We want to make sure that there is some convolution,54

i.e., that this subset contains more than one point.55

We need to select a family of subsets. There may be several such subsets. For example,56

if we select the central point (0, 0), we will get a set that skips some points.57

If we select one of the skipped points as a central point, we will need a different58

subset.59

So, in general, we are looking for not for a single subset, but for a family a of subsets.60

61

What does “optimal” mean? Out of all possible families a, we want to select an optimal62

one. What does “optimal” mean?63

In many cases, “optimal” is easy to describe:64

• we have an objective function f (a) that assigns a numerical value to each alternative65

a – e.g., gain in economic situations, and66

• optimal means we select an alternative for which the value of this objective function67

is the largest possible.68

However, this is not the only possible way to describe optimality.69

For example, if, in an economic situation, we are maximizing the expected gain,70

and there are several different alternatives with the exact same largest value of expected71

gain, we can use this non-uniqueness to select, e.g., the alternative with the smallest72

value of risk g(a) – as described, e.g., by the variance. In this case, we have, in effect, a73

more complex preference relation between alternatives – than in the case when decision74

is made based only on the value of the objective function. Specifically, we say that an75

alterative b is better than the alternative a – and we will denote it by a < b – if:76

• either we have f (a) < f (b),77

• or we have f (a) = f (b) and g(a) > g(b).78

If this still leaves several alternatives equally good, we can have even more complex79

criteria.80

In general, having an optimality criterion means that we are able to compare pairs81

of alternatives – at least some such pairs – and conclude that:82

• for some of these pairs, we have a < b,83

• for some of these pairs, we have b < a, and84

• for some others pairs, we conclude that alternatives a and b are, from our viewpoint,85

of equal value; we will denote this by a ∼ b.86

Of course, these relations must be consistent: e.g., if b is better than a, and c is better than87

b, then c should be better than a.88

What we must have is some alternative which is better than or equivalent to all89

others – otherwise, the optimization problem has no solutions. It also makes sense to90

require that there is only one such optimal alternative – indeed, as we have mentioned,91

if there are several equally good optimal alternatives, this means that the original92

optimality criterion is not final, we can use this non-uniqueness to optimize something93

else, i.e., in effect, to modify the original criterion into a more final one.94

For the same reason, for each point (x, y) on the plane, there should be exactly one95

set from the desired family a that contains this point. Indeed:96

• if there are no such sets, it is not clear what to choose, and97

• if there are several such sets, we could be able to use this non-uniqueness to optimize98

something else, i.e., in effect, to narrow down the family.99

Thus, two different subsets from a family cannot have a common point – i.e., in mathe-100

matical terms, these sets must be disjoint.101

In the next section, we will describe all this in precise terms.102
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Invariance. There is an additional natural requirement for possible optimality criteria,103

which is related to the fact that the original grid has lots of symmetries, i.e., transforma-104

tions that transform this grid into itself.105

For example, if we change the starting point of the coordinate system to a new106

point (x0, y0), then a point that originally had coordinates (x, y) now has coordinates107

(x− x0, y− y0). It makes sense to require that the relative quality of two different families108

a and b will not change if we simply change the starting point.109

Similarly, we can change the direction of the x-axis, then a point (x, y) becomes110

(−x, y). If we change the direction of the y-axis, we get a transformation (x, y)→ (x,−y).111

Finally, we can rename the coordinates: what was x will become y and vice versa; this112

corresponds to the transformation (x, y)→ (y, x). Such transformations should also not113

affect the relative quality of different families.114

Now, we are ready for the precise formulation of the problem.115

3. Definitions and the Main Result116

Definition.117

• By an alternative, we mean a family a of non-empty subsets of the grid Z×Z in which all118

sets are disjoint and at least one set has more than one element.119

• By an optimality criterion, we mean a pair of relations (<,∼) on the set of all possible120

alternatives that satisfy the following conditions:121

– if a < b and b < c, then a < c;122

– if a < b and b ∼ c, then a < c;123

– if a ∼ b and b < c, then a < c;124

– if a ∼ b and b ∼ c, then a ∼ c;125

– we have a ∼ a for all a; and126

– if a < b, then we cannot have a ∼ b.127

• We say that an alternative a is optimal with respect to the optimality criterion (<,∼) if128

for every other alternative b, we have b < a or b ∼ a.129

• We say that the optimality criterion is final if there exists exactly one alternative which is130

optimal with respect to this criterion.131

• By a transformation T, we mean one of the following transformations: Tx0,y0(x, y) =132

(x− x0, y− y0), Tx(x, y) = (−x, y), Ty(x, y) = (x,−y), and Tx,y(x, y) = (y, x).133

• For each alternative a and for each transformation T, by the result T(a) of applying the134

transformation T to the family a, we mean the family T(a) = {T(S) : S ∈ a}, where, for135

any set S, T(S) def
= {T(x, y) : (x, y) ∈ S}.136

• We say that the optimality criterion is invariant if a < b implies that T(a) < T(b), and137

a ∼ b implies that T(a) ∼ T(b).138

Proposition. For every final invariant optimality criterion, the optimal alternative is equal, for139

some integer k ≥ 1, to one of the following families:140

• the family of all the sets Gk,x0,y0

def
= {(x0 + k · nx, y0 + k · ny) : nx, ny ∈ Z} corresponding141

to all possible pairs of integers (x0, y0);142

• the family of all the sets

Nk,x0,y0

def
= {(x0 + k · nx, y0 + k · ny) : nx, ny ∈ Z and nx + ny is even}

corresponding to all possible pairs of integers (x0, y0).143

Comment. In the first case, we have a sub-grid – as was described in Section 1. In the144

second case, we have a different grid-type set:145
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Thus, this result explains the effectiveness of sub-grids – and also provides us with a147

new alternative worth trying.148

Proof.149

1◦. Since the optimality criterion is final, there exists exactly one optimal family aopt.150

Let us first prove that this family is itself invariant, i.e., that T(aopt) = aopt for all151

transformations T.152

Indeed, the fact that the family aopt is optimal means that for every family a, we153

have a < aopt or a ∼ aopt. Since this is true for every family a, it is also true for every154

family T−1(a), where T−1 denotes inverse transformation (i.e., a transformation for155

which T(T−1(x, y)) = (x, y)). Thus, for every family a, we have either T−1(a) < aopt or156

T−1(a) ∼ aopt. Due to invariance, we have a = T(T−1(a)) < T(aopt) or a ∼ T(aopt). By157

definition of optimality, this means that the alternative T(aopt) is also optimal. However,158

since the optimality criterion is final, there exists exactly one optimal family, so T(aopt) =159

aopt. The statement is proven.160

2◦. By definition of an alternative, every family – including the optimal family – contains
at least one set S that has at least two points. Let S be any such set, and let (x0, y0) be

any of its points. Then, due to Part 1 of this proof, the set S0
def
= Tx0,y0(S) also belongs to

the optimal family, and this set contains the point

Tx0,y0(x0, y0) = (x0 − x0, y0 − y0) = (0, 0).

Since the set S had at least two different points, the set S0 = Tx0,y0(S) also contains161

at least two different points. Thus, the set S0 must contain a point (x, y) which is different162

from (0, 0).163

3◦. Let us prove that if the set S0 contains a point (x, y), then it also contains the points164

(x,−y), (−x, y), and (y, x).165

Indeed, due to Part 1 of this proof, with the set S0 the optimal family contains the166

set Ty(S0). This set contains the point Ty(0, 0) = (0, 0). Thus, the sets S0 and Ty(S0) have167

a common element (0, 0). Since different sets from the optimal family must be disjoint,168

it follows that the sets S0 and Ty(S0) must coincide. The set Ty(S0) contains the points169

(x,−y) for each point (x, y) ∈ S. Since Ty(S0) = S0, this implies that for each point170

(x, y) ∈ S0, we have (x,−y) ∈ Ty(S0) = S0.171

Similarly, we can prove that (−x, y) ∈ S0 and (y, x) ∈ S0.172
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4◦. By combining the two conclusions of Part 3 – that (x,−y) ∈ S0 and that therefore
Tx(x,−y) = (−x,−y) ∈ S0, we conclude that for every point (x, y) ∈ S0, the point

−(x, y) def
= (−x,−y)

is also contained in the set S0.173

5◦. Let us prove that if the set S0 contains two points (x1, y1) and (x2, y2), then it also
contains the point

(x1y1) + (x2, y2)
def
= (x1 + x2, y1 + y2).

Indeed, due to Part 1 of this proof, the set T−x2,−y2(S0) also belongs to the optimal
family. This set shares an element

T−x2,−y2(0, 0) = (0− (−x2), 0− (−y2)) = (x2, y2)

with the original set S0. Thus, the set T−x2,−y2(S0) must coincide with the set S0. Due to
the fact that (x1, y1) ∈ S0, the element

T−x2,−y2(x1, y1) = (x1 − (−x2), y1 − (−y2)) = (x1 + x2, y1 + y2)

belongs to the set Tx1,y1(S0) = S0. The statement is proven.174

6◦. Let us prove that if the set S0 contains a point (x, y), then, for each integer c, this set
also contains the point

c · (x, y) = (c · x, c · y).

Indeed, if c is positive, this follows from the fact that

(c · x, c · y) = (x, y) + . . . + (x, y) (c times).

When c is negative, then we first use Part 4 and conclude that (−x,−y) ∈ S0, and then175

conclude that the point (|c| · (−x), |c| · (−y)(= (c · x, c · y) is in the set S0.176

7◦. Let us prove that if the set S0 contains points (x1, y1), . . . , (xn, yn), then for all integers
c1, . . . , cn, it also contains their linear combination

c1 · (x1, y1) + . . . + cn · (xn, yn) = (c1 · x1 + . . . + cn · xn, c1 · y1 + . . . + cn · yn).

Indeed, this follows from Parts 5 and 6.177

8◦. The set S0 contains some points which are different from (0, 0), i.e., points for which178

at least one of the integer coordinates is non-zero. According to Parts 3 and 4, we can179

change the signs of both x and y coordinates and still get points from S0. Thus, we can180

always consider points with non-negative coordinates.181

Let d denote the greatest common divisor of all positive values of the coordinates182

of points from S0.183

If a value x appears as an x-coordinate of some point (x, y) ∈ S0, then, due to Part 3,
we have (x,−y) ∈ S0 and thus, due to Part 4,

(xy) + (x,−y) = (2x, 0) ∈ S0.

Similarly, if a value y appears as a y-coordinate of some point (x, y) ∈ S0, then we get184

(0, 2y) ∈ S0 and thus, due to Part 3, (2y, 0) ∈ S0.185

It is a known that a common divisor d of the values v1, . . . , vn can be represented as
a linear combination of these values:

d = c1 · v1 + . . . + cn · vn.



Version April 17, 2021 submitted to Entropy 7 of 8

For each value vi, we have (2vi, 0) ∈ S0, thus, for

2d = c1 · (2v1) + . . . + cn · (2vn),

by Part 7, we get (2d, 0) ∈ S0. Due to Part 3, we thus have (0, 2d) ∈ S0, and due to Parts186

5 and 6, all points (nx · (2d), ny · (2d)) for integers nx and ny also belong to the set S0.187

If S0 has no other points, then for sets containing (0, 0), we indeed conclude that188

these sets form a desired sub-grid, with k = 2d.189

9◦. What if these are other points in the set S0? Since d is the greatest common divisor190

of all the coordinate values, each of these points has the form (cx · d, cy · d) for some191

integers cx and cy. Since this point is not of the form (nx · (2d), ny · (2d)), this means that192

either cx, or cy is an odd number – or both.193

Let us first consider the case when exactly one of the values cx and cy is odd.
Without losing generality, let us assume that cx is odd, so cx = 2nx + 1 and cy = 2ny for
some integers nx and ny. Due to Part 9, we have (2nx · d, 2ny · d) ∈ S0, to the difference

((2nx + 1) · d, 2ny · d)− (2nx · d, 2ny · d) = (d, 0)

also belongs to the set S0. Thus, similarly to Part 8, we can conclude that for every two194

integers cx and cy, we have (cx · d, cy · d) ∈ S0. So, in this case, S0 coincides with the195

sub-grid for which k = d.196

The only remaining case is when not all points (cx · d, cy · d) belong to the set S0.
This means that for some such point both values cx and cy are odd: cx = 2nx + 1 and
cy = 2ny + 1 for some integers nx and ny. Due to Part 9, we have (2nx · d, 2ny · d) ∈ S0,
to the difference

((2nx + 1) · d, (2ny + 1) · d)− (2nx · d, 2ny · d) = (d, d)

also belongs to the set S0.197

Since, due to Part 9, we have (2nx · d, 2ny · d) ∈ S0 for all nx and ny, we conclude, by198

using Part 4, that (2nx + 1) · d, (2ny + 1) · d) ∈ S0. So, all pairs for which both coordinates199

are odd multiples of d are in S0. Thus, we get the new case described in Proposition 1.200

10◦. The previous results were about the sets containing the point (0, 0).201

For all other sets S containing some other point (x0, y0), we get the same result202

about the sub-grid if we take into account that the optimal family is invariant, and thus,203

with the set S, the optimal family also contains the set Tx0,y0(S) that contains (0, 0) and204

is, thus, equal either to the desired sub-grid or to the new sub-grid-type set.205

The proposition is proven.206
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