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Abstract: One of the most effective image processing techniques is the use of convolutional neural1

networks, where we assign, to each spatial point (pixel) from the original grid, a combination2

of data corresponding to several neighboring spatial points. To speed up computations (while3

retaining the same accuracy), researchers have developed a dilated version of this technique, in4

which only data from some neighboring points is processed. It turns out that the most efficient5

case is when we select neighboring points from a sub-grid. In this paper, we explain this empirical6

efficiency by proving that for all reasonable optimality criteria, the optimal subset of the original7

grid is either a sub-grid, or a sub-grid-like set.8

Keywords: convolutional neural networks; dilated neural networks; optimality9

1. Introduction10

At present, one of the most efficient image processing techniques is a convolutional11

neural network; see, e.g., [1].12

An image is usually represented by data corresponding to different spatial points
(pixels). These spatial points usually form a rectangular grid, i.e., they have the form

(x, y) = (x0 + nx · ∆, y0 + ny · ∆),

where x0, y0, and ∆ are fixed, and nx and ny are integers. The spatial points constituting13

the image form a bounded part of the potentially infinite grid formed by all such points14

(x0 + nx · ∆, y0 + ny · ∆).15

The data corresponding to each spatial point can be different:16

• For simple black-and-while images, the data corresponding to each point is simply17

the intensity at this point.18

• For the usual color images, for each point, the corresponding data consists of three19

numbers corresponding to intensities at three basic colors.20

• For multi-spectral images – and for other situations where, for each spatial point,21

we have the results of several measurements – the data corresponding to each point22

consists of more than three numbers.23

In the convolutional neural network, on each step of the corresponding data process-24

ing, for each spatial point (x, y), to compute the new value – or values – corresponding25

to this point, we combine data corresponding to several spatial points (pixels) (x′, y′)26

which are close to the given point (x, y). For example, for black-and-white images,27

usually, either the maximum or a linear combination of the corresponding intensities is28

computed – and assigned to the central point of this group of neighboring pixels.29

One of the features of neural networks – as well as of many other machine learning30

tools – is that they often take a long time to train. This is not surprising: we humans31

– whose brain processes are, in effect, simulated in neural networks – are not that fast32

to learn either. From this viewpoint, it is desirable to decrease the computational time33
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needed for each training cycle while preserving the learning accuracy – or, alternatively,34

get a better accuracy within the same computation time.35

With respect to convolutional neural networks, a natural speed-up idea is to take36

into account that the more values we process, the longer this processing takes. Thus,37

to speed up computations, a reasonable idea is not to process the data corresponding38

to all the neighboring points from the grid, but only the data corresponding to some of39

these points. This idea indeed enabled researchers to achieve a better accuracy within40

the same computation time. The resulting networks are known as dilated convolutional41

neural networks, since skipping some points is kind of equivalent to extending (dilating)42

the distance between the remaining points; see, e.g., [3,5,6].43

Specifically, the success was attained when, to compute the new value(s) at a point44

(x, y), we take the data corresponding only to neighboring points (x + nx · ∆, y + ny · ∆)45

in which both nx and ny are divisible by some integer k > 1. In some cases, the best46

results are attained when k = 2, in other cases, when k = 3, etc. Such points form a47

sub-grid of the original rectangular grid.48

In principle, we could select different points. For example, to compute the new
value(s) at a point (x, y), we could take the data corresponding to points

(x + nx · ∆, y + by · ∆)

at which the sum n2
x + n2

y is divisible by 3. However, empirical evidence shows that the49

sub-grid selection works the best [3,5,6].50

To the best of our knowledge, there is no theoretical explanation for this empirical51

result – that selecting neighboring points from a sub-grid leads to better results that52

selecting neighboring points from another subset of the original grid. The main objective53

of this paper is to provide such an explanation.54

Comment. In this paper, we will only provide this explanation on the general abstract55

level. For this result to become practically useful, it is necessary to analyze which56

dilations and which neighborhoods work better for different practical problems and for57

different actual optimality criteria.58

2. Analysis of the Problem59

A geometric description of the convolution. Since convolution is mostly used to process60

2D images, it makes sense to analyze it from the geometric viewpoint.61

From the geometric viewpoint, pixels form a rectangular grid. To simplify the62

coordinate description of this grid, let us select one of the points on this grid as the63

starting point (0, 0). As this starting point, we can select the center of the image, we can64

select one of the vertices of the images, or we can select any other meaningful point.65

For the same purpose of simplifying the description of the grid, as the unit of length,66

let us select the distance between the two neighboring points along each axis. In the67

resulting coordinate system, all coordinates of all the grid points are integers: all the68

points on the grid have the form (x, y), where x and y are integers.69

Of course, in practice, the grid is finite in both x- and y-directions, so it forms a70

(large) subset of the set Z×Z of all possible pairs of integers; see Fig. 1.71



Version May 24, 2021 submitted to Entropy 3 of 10

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

�@ �@ �@ �@ �@

�@ �@ �@ �@ �@

�@ �@ �@ �@ �@

�@ �@ �@ �@ �@

�@ �@ �@ �@ �@

72

73

74

Figure 1: The original grid used for convolution75

When we perform convolution, then, to each point (x, y), we assign a combination of76

data corresponding to the point (x, y) itself, and data corresponding to the grid points77

which are close to the point (x, y).78

Comments.79

• In view of the following discussion, it is important to mention that for all the points80

(x, y), we use the same grid, the only difference is that for different points (x, y), we81

select different neighborhoods in this same grid.82

• We can select different points on the grid as starting points for the coordinate system.83

Instead of the originally selected point, we can select, as a starting point, a different84

point whose coordinates in the original coordinate system are (x0, y0). In this case,85

each grid point that had coordinates (x, y) in the original coordinate system now86

has coordinates (x− x0, y− y0).87

Geometric description of dilated convolution. In dilated convolution, to compute the88

new value(s) corresponding to the point (0, 0), we consider only data from the points89

which are close to (0, 0) and which belong to a sub-grid of the original grid – e.g., to the90

set of all the points (x, y) for which both x and y are integers divisible by 2; see Fig. 2.91
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Figure 2. Grid corresponding to dilated convolution; case k = 298

For points (2, 2), (2, 4) – and, in general, for each point (x, y) in which both x and y are
even – we consider data corresponding to the neighboring-to-(x, y) points from the same
subset

{(2nx, 2ny) : nx, ny ∈ Z}

of the original grid.99
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However, to describe the new value(s) corresponding to the point (0, 1), we cannot
use the same subset: indeed, to compute the new value(s) corresponding to the point
(0, 1), we also need to take into account the data corresponding to the original spatial
point (0, 1) itself, and this point does not belong to the above sub-grid. In the dilated
convolution, to describe the new value(s) corresponding to the point (0, 1), we combine
data corresponding to neighboring points from a different subset

{(2nx, 2ny + 1) : nx, ny ∈ Z}.

Other grid points correspond to yet different subsets: for example, the point (1, 0)
corresponds to the subset

{(2nx + 1, 2ny) : nx, ny ∈ Z},

and the point (1, 1) corresponds to the subset

{(2nx + 1, 2ny + 1) : nx, ny ∈ Z}.

Overall, while the original convolutional neural network can be described by a100

single grid (in which we select neighboring points), the k = 2 dilated network needs all101

four above subsets of this grid – so that we process data corresponding to the neighboring102

points from the corresponding sub-grid.103

Similarly, for a dilated grid with k = 3, we need 9 sub-grids; for a dilated grid with104

k = 4, we need 16 sub-grids, etc.105

General case: a geometric description. As we have mentioned earlier, in principle,106

we do not need to a priori restrict ourselves to sub-grids. We can, instead, consider107

neighboring points from different subsets of the original grid Z×Z.108

Let S0 ⊂ Z× Z be a set of points that is used to determine the new value(s) at109

the point (0, 0): to be more precise, the new value(s) corresponding to the point (0, 0)110

comes from processing data from all the points from this set S0 which are close to (0, 0).111

Similarly, for any other point (x, y) from this set S0, we can compute the new value(s)112

corresponding to this point by processing data from all the points from this set S0 which113

are close to this point (x, y).114

However, for a point (x, y) ∈ Z×Z which does not belong to the set S0, we cannot115

use only neighboring points from this set S0 – since we would like the new value(s) in116

this point to take into account the original data in this same point. Thus – similar to117

the dilated case – we need to have several such subsets S. In other words, to describe a118

general case, we need to have a family a of subsets of the grid Z×Z.119

Let us describe reasonable properties that this family must satisfy.120

First property: for each family, the union of all its sets must be equal to the original121

grid. For each point (x, y) ∈ Z× Z, we need to decide which other points to use to122

compute the new value(s) at this spatial point. So, we need to have a set S from the123

family a – so that we will use data corresponding to points from this set S which are124

close to the given point (x, y). As we mentioned earlier, in these calculations, we want to125

use the data corresponding to this same point (x, y) as well. So, we must have (x, y) ∈ S.126

In other words, every point from the original grid should be covered by one of the sets127

from the family a.128

Thus, the union of all these sets should indeed coincide with the original grid.129

Second property: different sets from a family must be disjoint. For each point (x, y),130

we want to know for which exactly neighboring points, the corresponding data should131

be processed to compute the new value(s) corresponding to this point (x, y). So, we132

cannot have a point (x, y) belong to two different sets S, S′ ∈ a – in this case, we would133

have two different possible sets of points to use.134
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Thus, different sets from the family a cannot contain the same point – in other135

words, these sets must be disjoint.136

Third property: each family must contain at least one set containing more than one137

points. In principle, we can have each set S from the family a consist of a single138

point. This would mean that to compute the new value(s) corresponding to the spatial139

point (x, y), we use only the data corresponding to this same point. This is not what140

convolution is about, convolution is about processing data corresponding to several141

spatial points.142

Thus, since we are interested in convolution, we should avoid this trivial case and143

we should assume that at least one set S from the family a more than one point.144

What does “optimal” mean? Out of all possible families a, we want to select an optimal145

one. What does “optimal” mean?146

In many cases, “optimal” is easy to describe:147

• we have an objective function f (a) that assigns a numerical value to each alternative148

a – e.g., the average approximation error of the numerical method a for solving a149

system of differential equations, and150

• optimal means we select an alternative for which the value of this objective function151

is the smallest possible (or, for some objective functions, the largest possible).152

However, this is not the only possible way to describe optimality.153

For example, if we are minimizing the average approximation error, and there154

are several different numerical methods with the exact same smallest value of average155

approximation error, then we can use this non-uniqueness to select, e.g., the method with156

the shortest average computation time. In this case, we have, in effect, a more complex157

preference relation between alternatives than in the case when decision is made based158

solely on the value of the objective function. Specifically, in this case, an alternative b is159

better than the alternative a – we will denote it by a < b – if:160

• either we have f (b) < f (a),161

• or we have f (a) = f (b) and g(b) < g(a).162

If this still leaves several alternatives which are equally good, then we can optimize163

something else and thus, have an even more complex optimality criterion.164

In general, having an optimality criterion means that we are able to compare pairs165

of alternatives – at least some such pairs – and conclude that:166

• for some of these pairs, we have a < b,167

• for some of these pairs, we have b < a, and168

• for some others pairs, we conclude that alternatives a and b are, from our viewpoint,169

of equal value; we will denote this by a ∼ b.170

Of course, these relations must satisfy some reasonable properties. For example, if b is171

better than a, and c is better than b, then c should be better than a; in mathematical terms,172

the relation < must be transitive.173

What we must have is some alternative which is better than or equivalent to all174

others – otherwise, the optimization problem has no solutions. It also makes sense to175

require that there is only one such optimal alternative – indeed, as we have mentioned, if176

there are several equally good optimal alternatives, this means that the original optimal-177

ity criterion is not final, that we can use this non-uniqueness to optimize something else,178

i.e., in effect, to modify the original criterion into a final (or at least “more final”) one.179

Invariance. There is an additional natural requirement for possible optimality criteria,180

which is related to the fact that the original grid has lots of symmetries, i.e., transforma-181

tions that transform this grid into itself.182

For example, if we change the starting point of the coordinate system to a new183

point (x0, y0), then a point that originally had coordinates (x, y) now has coordinates184

(x− x0, y− y0). It makes sense to require that the relative quality of two different families185

a and b will not change if we simply change the starting point.186
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Similarly, we can change the direction of the x-axis, then a point (x, y) becomes187

(−x, y). If we change the direction of the y-axis, we get a transformation (x, y)→ (x,−y).188

Finally, we can rename the coordinates: what was x will become y and vice versa; this189

corresponds to the transformation (x, y)→ (y, x). Such transformations should also not190

affect the relative quality of different families.191

Now, we are ready for the precise formulation of the problem.192

3. Definitions and the Main Result193

Definition.194

• By an alternative, we mean a family of non-empty subsets of the grid Z×Z, a family in195

which:196

– all sets from this family are disjoint, and197

– at least one set from this family has more than one element.198

• By an optimality criterion, we mean a pair of relations (<,∼) on the set of all possible199

alternatives that satisfy the following conditions:200

– if a < b and b < c, then a < c;201

– if a < b and b ∼ c, then a < c;202

– if a ∼ b and b < c, then a < c;203

– if a ∼ b and b ∼ c, then a ∼ c;204

– we have a ∼ a for all a; and205

– if a < b, then we cannot have a ∼ b.206

• We say that an alternative a is optimal with respect to the optimality criterion (<,∼) if207

for every other alternative b, we have b < a or b ∼ a.208

• We say that the optimality criterion is final if there exists exactly one alternative which is209

optimal with respect to this criterion.210

• By a transformation T, we mean one of the following transformations: Tx0,y0(x, y) =211

(x− x0, y− y0), Tx(x, y) = (−x, y), Ty(x, y) = (x,−y), and Tx,y(x, y) = (y, x).212

• For each alternative a and for each transformation T, by the result T(a) of applying the213

transformation T to the family a, we mean the family T(a) = {T(S) : S ∈ a}, where, for214

any set S, T(S) def
= {T(x, y) : (x, y) ∈ S}.215

• We say that the optimality criterion is invariant if for all transformations T, a < b implies216

that T(a) < T(b), and a ∼ b implies that T(a) ∼ T(b).217

Comments.218

• In our definition of an alternative, we did not require that for each family, the union219

of all its sets coincide with the grid Z×Z. We omitted this requirement to make our220

result stronger – since, as we see from the following Proposition, this requirement221

actually follows from all the other requirements.222

• In mathematical terms, the pair of relations (<,∼) between families of subsets223

forms what is called a preorder or quasiorder. This notion is more general than partial224

order, since, in contrast to the definition of the partial order, we do not require that225

if a ≤ b and b ≤ a, then a = b: in principle, we can have a ∼ b for some a 6= b.226

Proposition. For every final invariant optimality criterion, the optimal alternative is equal, for227

some integer k ≥ 1, to one of the following families:228

• the family of all the sets Gk,x0,y0

def
= {(x0 + k · nx, y0 + k · ny) : nx, ny ∈ Z} corresponding229

to all possible pairs of integers (x0, y0) for which 0 ≤ x0, y0 < k;230

• the family of all the sets

Nk,x0,y0

def
= {(x0 + k · nx, y0 + k · ny) : nx, ny ∈ Z and nx + ny is even}

corresponding to all possible pairs of integers (x0, y0) for which 0 ≤ x0, y0 < k.231



Version May 24, 2021 submitted to Entropy 7 of 10

Comments.232

• This proposition takes care of all invariant (and final) optimality criteria. Thus, it233

should work for all usual criteria based on misclassification rate, time of calculation,234

used memory, or any other used in neural networks: indeed, if one method is better235

than another for images in general, it should remain to be better if we simply shift236

all the images or turn all the images upside down. Images can come as they are, they237

can come upside down, they can come shifted, etc. If for some averaging criterion,238

one method works better for all possible images but another method works better239

for all upside-down versions of these images – which is, in effect, the same class of240

possible images – then from the common sense viewpoint, this would mean that241

something is not right with this criterion.242

• In the first case, we have a sub-grid – as was described in Section 1. In the second243

case, we have a different grid-type set; see Fig. 3.244
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Figure 3. A grid-type set described in the Proposition248

Thus, this result explains the effectiveness of sub-grids – and also provides us with249

a new alternative worth trying.250

• The following proof is similar to several proofs presented in [4].251

Proof.252

1◦. Since the optimality criterion is final, there exists exactly one optimal family aopt.253

Let us first prove that this family is itself invariant, i.e., that T(aopt) = aopt for all254

transformations T.255

Indeed, the fact that the family aopt is optimal means that for every family a, we256

have a < aopt or a ∼ aopt. Since this is true for every family a, it is also true for every257

family T−1(a), where T−1 denotes inverse transformation (i.e., a transformation for258

which T(T−1(x, y)) = (x, y)). Thus, for every family a, we have either T−1(a) < aopt or259

T−1(a) ∼ aopt. Due to invariance, we have a = T(T−1(a)) < T(aopt) or a ∼ T(aopt). By260

definition of optimality, this means that the alternative T(aopt) is also optimal. However,261

since the optimality criterion is final, there exists exactly one optimal family, so T(aopt) =262

aopt.263

The statement is proven.264

2◦. Let us now prove that the optimal family contains a set S0 that, it its turn, contains265

the point (0, 0) and some point (x, y) 6= (0, 0).266

Indeed, by definition of an alternative, every family – including the optimal family
– contains at least one set S that has at least two points. Let S be any such set from the
optimal family, and let (x0, y0) be any of its points. Then, due to Part 1 of this proof, the

set S0
def
= Tx0,y0(S) also belongs to the optimal family, and this set contains the point

Tx0,y0(x0, y0) = (x0 − x0, y0 − y0) = (0, 0).
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Since the set S had at least two different points, the set S0 = Tx0,y0(S) also contains267

at least two different points. Thus, the set S0 must contain a point (x, y) which is different268

from (0, 0).269

The statement is proven.270

3◦. In the following text, by S0, we will mean a set from the optimal family aopt whose271

existence is proven in Part 2 of this proof: namely, a set that contains the point (0, 0) and272

a point (x, y) 6= (0, 0).273

4◦. Let us prove that if the set S0 contains a point (x, y), then this set also contains the274

points (x,−y), (−x, y), and (y, x).275

Indeed, due to Part 1 of this proof, with the set S0 the optimal family aopt also276

contains the set Ty(S0). This set contains the point Ty(0, 0) = (0, 0). Thus, the sets S0 and277

Ty(S0) have a common element (0, 0). Since different sets from the optimal family must278

be disjoint, it follows that the sets S0 and Ty(S0) must coincide. The set Ty(S0) contains279

the points (x,−y) for each point (x, y) ∈ S. Since Ty(S0) = S0, this implies that for each280

point (x, y) ∈ S0, we have (x,−y) ∈ Ty(S0) = S0.281

Similarly, we can prove that (−x, y) ∈ S0 and (y, x) ∈ S0. The statement is proven.282

5◦. By combining the two conclusions of Part 4 – that (x,−y) ∈ S0 and that therefore
Tx(x,−y) = (−x,−y) ∈ S0, we conclude that for every point (x, y) ∈ S0, the point

−(x, y) def
= (−x,−y)

is also contained in the set S0.283

6◦. Let us prove that if the set S0 contains two points (x1, y1) and (x2, y2), then it also
contains the point

(x1, y1) + (x2, y2)
def
= (x1 + x2, y1 + y2).

Indeed, due to Part 1 of this proof, the set T−x2,−y2(S0) also belongs to the optimal
family. This set shares an element

T−x2,−y2(0, 0) = (0− (−x2), 0− (−y2)) = (x2, y2)

with the original set S0. Thus, the set T−x2,−y2(S0) must coincide with the set S0. Due to
the fact that (x1, y1) ∈ S0, the element

T−x2,−y2(x1, y1) = (x1 − (−x2), y1 − (−y2)) = (x1 + x2, y1 + y2)

belongs to the set Tx1,y1(S0) = S0. The statement is proven.284

7◦. Let us prove that if the set S0 contains a point (x, y), then, for each integer c, this set
also contains the point

c · (x, y) = (c · x, c · y).

Indeed, if c is positive, this follows from the fact that

(c · x, c · y) = (x, y) + . . . + (x, y) (c times).

When c is negative, then we first use Part 5 and conclude that (−x,−y) ∈ S0, and then285

conclude that the point (|c| · (−x), |c| · (−y)) = (c · x, c · y) is in the set S0.286

8◦. Let us prove that if the set S0 contains points (x1, y1), . . . , (xn, yn), then for all integers
c1, . . . , cn, it also contains their linear combination

c1 · (x1, y1) + . . . + cn · (xn, yn) = (c1 · x1 + . . . + cn · xn, c1 · y1 + . . . + cn · yn).

Indeed, this follows from Parts 6 and 7.287
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9◦. The set S0 contains some points which are different from (0, 0), i.e., points for which288

at least one of the integer coordinates is non-zero. According to Parts 4 and 5, we can289

change the signs of both x and y coordinates and still get points from S0. Thus, we can290

always consider points with non-negative coordinates.291

Let d denote the greatest common divisor of all positive values of the coordinates292

of points from S0.293

If a value x appears as an x-coordinate of some point (x, y) ∈ S0, then, due to Part 4,
we have (x,−y) ∈ S0 and thus, due to Part 5,

(x, y) + (x,−y) = (2x, 0) ∈ S0.

Similarly, if a value y appears as a y-coordinate of some point (x, y) ∈ S0, then we get294

(0, 2y) ∈ S0 and thus, due to Part 3, (2y, 0) ∈ S0.295

It is a known that a common divisor d of the values v1, . . . , vn can be represented as
a linear combination of these values:

d = c1 · v1 + . . . + cn · vn.

For each value vi, we have (2vi, 0) ∈ S0, thus, for

2d = c1 · (2v1) + . . . + cn · (2vn),

by Part 8, we get (2d, 0) ∈ S0. Due to Part 4, we thus have (0, 2d) ∈ S0, and due to Parts296

6 and 7, all points (nx · (2d), ny · (2d)) for integers nx and ny also belong to the set S0.297

If S0 has no other points, then for sets containing (0, 0), we indeed conclude that298

these sets form a desired sub-grid, with k = 2d.299

10◦. What if these are other points in the set S0? Since d is the greatest common divisor300

of all the coordinate values, each of these points has the form (cx · d, cy · d) for some301

integers cx and cy. Since this point is not of the form (nx · (2d), ny · (2d)), this means that302

either cx, or cy is an odd number – or both.303

Let us first consider the case when exactly one of the values cx and cy is odd.
Without losing generality, let us assume that cx is odd, so cx = 2nx + 1 and cy = 2ny for
some integers nx and ny. Due to Part 9, we have (2nx · d, 2ny · d) ∈ S0, so the difference

((2nx + 1) · d, 2ny · d)− (2nx · d, 2ny · d) = (d, 0)

also belongs to the set S0. Thus, similarly to Part 9, we can conclude that for every two304

integers cx and cy, we have (cx · d, cy · d) ∈ S0. So, in this case, S0 coincides with the305

sub-grid for which k = d.306

The only remaining case is when not all points (cx · d, cy · d) belong to the set S0.
This means that for some such point both values cx and cy are odd: cx = 2nx + 1 and
cy = 2ny + 1 for some integers nx and ny. Due to Part 9, we have (2nx · d, 2ny · d) ∈ S0,
so the difference

((2nx + 1) · d, (2ny + 1) · d)− (2nx · d, 2ny · d) = (d, d)

also belongs to the set S0.307

Since, due to Part 9, we have (2nx · d, 2ny · d) ∈ S0 for all nx and ny, we conclude,308

by using Part 5, that ((2nx + 1) · d, (2ny + 1) · d) ∈ S0. So, all pairs for which both309

coordinates are odd multiples of d are in S0. Thus, we get the new case described in the310

Proposition.311

11◦. The previous results were about the sets containing the point (0, 0).312

For all other sets S containing some other point (x0, y0), we get the same result313

about the sub-grid if we take into account that the optimal family is invariant, and thus,314
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with the set S, the optimal family also contains the set Tx0,y0(S) that contains (0, 0) and315

is, thus, equal either to the desired sub-grid or to the new sub-grid-type set.316

The proposition is proven.317

4. Conclusions and Future Work318

Conclusions. One of the efficient machine learning ideas is the idea of a convolutional319

neural network, when to each point in the orgoal image, we assign a combination of data320

corresponding to several neighboring points. To speed up computations, a reasonable321

idea is to use only a subset of the set of all of neighboring points. It turns out that out of322

all such subsets, the best results are obtained when we only use data corresponding to323

neighboring points from a sub-grid of the original grid of pixels.324

In this paper, we provide a theoretical explanation for this empirical conclusion.325

Future work. This paper describes a general abstract result: that for any optimality326

criterion that satisfies some reasonable properties, some sub-grid is optimal. To be practi-327

cally useful, it is desirable to analyze which sub-grid is optimal for different practical328

situations and for specific criteria uses in machine learning, such as misclassification rate,329

time of calculation, used memory, etc. (and the combination of these criteria). It is also330

desirable to analyze what size neighborhood should we choose for different practical331

situations and for different criteria.332
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