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Abstract: One of the most effective image processing techniques is the use of convolutional neural1

networks that use convolutional layers. In each such layer, the value of the output at each point2

is a combination of input data corresponding to several neighboring points. To improve the3

accuracy, researchers have developed a version of this technique, in which only data from some4

of the neighboring points is processed. It turns out that the most efficient case – called dilated5

convolution – is when we select the neighboring points whose differences in both coordinates are6

divisible by some constant `. In this paper, we explain this empirical efficiency by proving that for7

all reasonable optimality criteria, dilated convolution is indeed better than possible alternatives.8

Keywords: convolutional neural networks; dilated neural networks; optimality9

1. Introduction10

At present, one of the most efficient techniques in image processing and in other11

areas is a convolutional neural network; see, e.g., [1]. Convolutional neural networks12

include layers performing convolution.13

The input data to a convolution is characterized by a function F : D → R, where14

D def
= (Z ∪ [X, X])× (Z ∪ [Y, Y]) is the set of all pairs of integers (x, y) for which X ≤15

x ≤ X and Y ≤ y ≤ Y. In other words, the set D is a bounded part of the potentially16

infinite “grid” Z× Z formed by all the 2-D points (x, y) with integer coefficients. For17

example, if the input is a grey-scale image, then F(x, y) is the image’s intensity in the18

pixel (x, y).19

The output signal of a convolution is described by a function G : D → R, where

G(x, y) = ∑
−L≤i,j≤L

k(i, j) · F(x− i, y− j), (1)

for some function k : (Z∪ [−L, L])× (Z∪ [−L, L])→ R known as a filter.20

The output signal G(x, y) corresponding to the point (x, y) is determined by the21

values F(x− i, y− j) of the input signals at points (x− i, y− j) corresponding to |i| ≤ L22

and |j| ≤ L. This is illustrated by Fig. 1, where, for L = 1 and for a point (x, y) marked23

by an asterisk, we show all the points (x′, y′) = (x0 − i, y0 − j) that determine the value24

G(x, y). For convenience, points (x′, y′) that do not affect the value G(x, y), are marked25

by zeros.26
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Figure 1: Convolution: case of L = 130

For L = 2, a similar picture has the following form:31
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Figure 2: Convolution: case of L = 235

Originally, convolutional neural networks used filters in which all the values k(i, j)36

for |i|, |j| ≤ L can be non-zero. It turned out, however, that we can achieve a better37

accuracy if we consider filters in which some of the values k(i, j) for −L ≤ i, j ≤ L are38

fixed at 0; see, e.g., [3,5,6]. In Fig. 3, we show an example of such a situation, when L = 239

and only values k(i, j) for which both i and j are even are allowed to be non-zero.40
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Figure 3. Case when L = 2 and only values k(i, j) with even i and j can be no-zero47

In general, it turned out that such a restriction works best if we only allow k(i, j) 6= 0
for pairs (i, j) which are divisible by some integer `, i.e., if we take

G(x, y) = ∑
−L≤i,j≤L: i/`∈Z, j/`∈Z

k(i, j) · F(x− i, y− j). (2)
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In this case, the output signal G(x, y) can be written in the following equivalent form:

G(x, y) = ∑
−L̃≤ĩ, j̃≤L̃

k̃
(

ĩ, j̃
)
· F
(

x− ` · ĩ, y− j̃
)

, (3)

where we denoted L̃ def
= L/`, ĩ def

= i/`, j̃ def
= j/`, and k̃

(
ĩ, j̃
)

def
= k

(
` · ĩ, ` · j̃

)
. The resulting48

networks are known as dilated convolutional neural networks, since skipping some49

points (i, j) in the description of the filter is kind of equivalent to extending (dilating)50

the distance between the remaining points; see, e.g., [3,5,6].51

In principle, we could select other points (i, j) at which the filter can be non-zero.52

For example, we could select points for which j is even, but i can be any integer:53
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Figure 4. Case when L = 2 and only values k(i, j) with even j can be non-zero60

Alternatively, for L = 2, as points (i, j) at which k(i, j) can be non-zero, we could61

select the points (0, 0), (0,±1), (±1, 0), and (±2,±2), see Fig. 5.62
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Figure 5. A possible selection of points (i, j) for which k(i, j) can be no-zero69

However, empirical evidence shows that the selection corresponding to dilated70

convolution – when we select points for which i and j are both divisible by some integer71

` – works the best [3,5,6].72
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To the best of our knowledge, there is no theoretical explanation for this empirical73

result – that dilated convolution leads to better results that selecting other sets of non-74

zero-valued points (i, j). The main objective of this paper is to provide such an explanation.75

76

Comment. Let us emphasize that the only objective of this paper is to explain this em-77

pirical fact, we are not yet at a stage where we can propose a new method or even any78

improvements to the known methods.79

2. Analysis of the Problem80

Let us reformulation this situation in geometric terms: case of traditional convolu-
tion. In the original convolution formula (1), to find the value the output signal G(x, y)
at a point (x, y), we need to know the values F(x′, y′) the input signal at all the points
(x′, y′) of the type (x − i, y − j) for |i|, |j| ≤ L. We can reformulate it by saying that
we need to know the values F(x′, y′) at all the points (x′, y′) at which the Manhattan
distance

dM((x, y), (x′, y′)) def
= max(|x− x′|, |y− y′|), (4)

does not exceed L:

G(x, y) = ∑
(x′ ,y′)∈D: dM((x,y),(x′ ,y′))≤L

k(x− x′, y− y′) · F(x′, y′). (5)

That we use, in this formula, the bounded subset D of the “grid" Z×Z and not the

whole set S̃ def
= Z× Z only matters at the border of the domain D. So, to simplify our

formulas, we can follow the usual tradition (see, e.g., [5]) and simply use the whole set
S̃ = Z×Z instead of the bounded set D:

G(x, y) = ∑
(x′ ,y′)∈S̃: dM((x,y),(x′ ,y′))≤L

k(x− x′, y− y′) · F(x′, y′). (6)

81

Comment. Note that the set S̃ is potentially infinite. What makes the set of all the points82

(x′, y′) – that affects the value G(x, y) – finite is the restriction dM((x, y), (x′, y′)) ≤ L,83

whose meaning is that such points (x′, y′) should belong to the corresponding neighbor-84

hood of the point (x, y).85

Case of dilated convolution. The dilated convolution can be described in a similar way.
Namely, we can describe the formula (2) as

G(x, y) = ∑
(x′ ,y′)∈S(x,y): dM((x,y),(x′ ,y′))≤L

k(x− x′, y− y′) · F(x′, y′), (7)

the only difference is that, in contrast to the usual convolution, when the same set86

S̃ = Z×Z could be used for all the points (x, y), here, in general, we may need different87

sets S(x, y) for different points (x, y).88

For example, if ` = 2, then we need four such sets:89

• for points (x, y) for which both x and y are even, the formula (7) holds for

S(0, 0) = S(0, 2) = . . . = S(`=2)
0,0

def
= {(x, y) ∈ Z×Z : x and y are even}; (8)

• for points (x, y) for which x is even but y is odd, the formula (7) holds for

S(0, 1) = S(0, 3) = . . . = S(`=2)
0,1

def
= {(x, y) ∈ Z×Z : x is even and y is odd}; (9)



Version June 5, 2021 submitted to Entropy 5 of 12

• for points (x, y) for which x is odd but y is even, the formula (7) holds for

S(1, 0) = S(1, 2) = . . . = S(`=2)
1,0

def
= {(x, y) ∈ Z×Z : x is odd and y is even}; (10)

• finally, for points (x, y) for which x and y are both odd, the formula (7) holds for

S(0, 1) = S(0, 3) = . . . = S(`=2)
1,1

def
= {(x, y) ∈ Z×Z : x and y are odd}. (11)

In this case, instead of the single set S(x, y) = S̃ (as in the case of the traditional
convolution), we have a set of such sets

F =
{

S(`=2)
0,0 , S(`=2)

0,1 , S(`=2)
1,0 , S(`=2)

1,1

}
. (12)

To avoid confusion, we will call subsets of the original “grid" Z×Z sets, while the set
of such sets will be called a family. In these terms, the formula (7) can be described as
follows:

G(x, y) = ∑
(x′ ,y′)∈S(x,y): dM((x,y),(x′ ,y′))≤L

k(x− x′, y− y′) · F(x′, y′), (13)

where S(x, y) denotes the set S ∈ F from the family F that contains the point (x, y).90

In this representation, all four sets S from the family F are infinite – just like the set91

S̃ corresponding to the traditional convolution is infinite. Similarly to the traditional92

convolution, what makes the set of all the points (x′, y′) – that affects the value G(x, y) –93

finite is the restriction dM((x, y), (x′, y′)) ≤ L, whose meaning is that such points (x′, y′)94

should belong to the corresponding neighborhood of the point (x, y).95

Fig. 6 describes which of the four sets S ∈ F corresponds to each point (x, y) from96

the “grid” Z×Z:97
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Figure 6. Sets S(x, y) corresponding to different points (x, y)101

For ` = 3, we can get a similar reformulation, with the family

F =
{

S(`=3)
0,0 , S(`=3)

0,1 , S(`=3)
0,2 , S(`=3)

1,0 , S(`=3)
1,1 , S(`=3)

1,2 , S(`=3)
2,0 , S(`=3)

2,1 , S(`=3)
2,2

}
, (14)

where S(`=3)
i,j is the set of all the pairs (x, y) ∈ Z×Z in which both differences x− i and102

y− j are divisible by 3.103

Other cases. Such a representation is possible not only for dilated convolution. For
example, the above case when we allow arbitrary value i and require the value j to be
even can be described in a similar way, with

F = {S0, S1}, (15)

where:104
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• for points (x, y) for which y is even, we take

S(0, 0) = S(1, 0) = . . . = S0
def
= {(x, y) ∈ Z×Z : y is even}, (16)

• and for points (x, y) for which y is odd, we take

S(0, 1) = S(1, 1) = . . . = S1
def
= {(x, y) ∈ Z×Z : y is odd}. (17)

In principle, we can also have families that have infinite number of sets; an example of105

such a family will be given below.106

General case. In the general case, we get the following situation:107

• we have a family F of subsets of the “grid” Z×Z;108

• the value G(x, y) of the output signal at a point (x, y) is determined by the formula

G(x, y) = ∑
(x′ ,y′)∈S(x,y): dM((x,y),(x′ ,y′))≤L

k(x, x′, y, y′) · F(x′, y′), (18)

for some values k(x, x′, y, y′), where S(x, y) denotes the set S ∈ F from the family109

F that contains the point (x, y).110

For the formula (18) to uniquely determine the value G(x, y), we need to make sure that111

the set S(x, y) is uniquely determined by the point (x, y), i.e., that for each point (x, y),112

the family F contain one and only one set S that contains this point. In other words:113

• different sets from the family F must be disjoint, and114

• the union of all the sets S ∈ F must coincide with the whole “grid” Z×Z.115

In mathematical terms, the family F must form a partition of the “grid” Z×Z.116

Comment. To avoid possible confusion, it is worth mentioning that while different sets S117

from the family F are disjoint, this does not preclude the possibility that sets S(x, y) and118

S(x′, y′) corresponding to different points (x, y) 6= (x′, y′) can be identical. For example,119

in the description of the traditional convolution, the family F consists of only one set120

F =
{

S̃
}

. In this case, for all points (x, y) and (x′, y′), we have S(x, y) = S(x′, y′) = S̃.121

In terms of sets corresponding to different points, disjointness means that if the sets122

S(x, y) and S(x′, y′) are different, then these sets must be disjoint: S(x, y) ∪ S(x′, y′) = ∅.123

124

We do not a priori require shift-covariance. Please note that we do not a priori require125

that the sets S(x, y) and S(x0, y0) corresponding to two different points (x, y) and (x0, y0)126

should be obtained from each other by shift – this property is known as shift covariance127

and as satisfied both for the usual convolution and for the dilated convolution.128

It should be emphasized, however, that we will show that this shift-covariance129

property holds for the optimal arrangement.130

Let us avoid the trivial case. From the purely mathematical viewpoint, we can have a131

partition of the “grid” Z×Z into one-point sets {(x, y)}. This is an example when the132

family F has infinitely many subsets.133

In this case, no matter what value L we choose, the formula (18) implies that the134

value G(x, y) of the output signal at a point (x, y) is determined only by the value F(x, y)135

of the input signal at this same point. In this case, there is no convolution, i.e., no136

combination of values F(x, y) at different points (x, y). To avoid this situation, we will137

additionally require that at least one set from the family F should contain more than138

one element.139

What we plan to do. We will consider all possible families F that form a partition of140

the “grid” Z× Z, and we will show that for all optimality criteria that satisfy some141

reasonable conditions, the optimal family is either the family of sets corresponding to142

the dilated convolution – or a natural modification of this family.143
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Let us describe what we mean by an optimality criteria.144

What does “optimal” mean? In our case, we select between different families of sets F ,145

F ′, . . . In general, we select between alternatives a, b, etc. Out of all possible alternatives,146

we want to select an optimal one. What does “optimal” mean?147

In many cases, “optimal” is easy to describe:148

• we have an objective function f (a) that assigns a numerical value to each alternative149

a – e.g., the average approximation error of the numerical method a for solving a150

system of differential equations, and151

• optimal means we select an alternative for which the value of this objective function152

is the smallest possible (or, for some objective functions, the largest possible).153

However, this is not the only possible way to describe optimality.154

For example, if we are minimizing the average approximation error, and there155

are several different numerical methods with the exact same smallest value of average156

approximation error, then we can use this non-uniqueness to select, e.g., the method with157

the shortest average computation time. In this case, we have, in effect, a more complex158

preference relation between alternatives than in the case when decision is made based159

solely on the value of the objective function. Specifically, in this case, an alternative b is160

better than the alternative a – we will denote it by a < b – if:161

• either we have f (b) < f (a),162

• or we have f (a) = f (b) and g(b) < g(a).163

If this still leaves several alternatives which are equally good, then we can optimize164

something else and thus, have an even more complex optimality criterion.165

In general, having an optimality criterion means that we are able to compare pairs166

of alternatives – at least some such pairs – and conclude that:167

• for some of these pairs, we have a < b,168

• for some of these pairs, we have b < a, and169

• for some others pairs, we conclude that alternatives a and b are, from our viewpoint,170

of equal value; we will denote this by a ∼ b.171

Of course, these relations must satisfy some reasonable properties. For example, if b is172

better than a, and c is better than b, then c should be better than a; in mathematical terms,173

the relation < must be transitive.174

What we must have is some alternative which is better than or equivalent to all175

others – otherwise, the optimization problem has no solutions. It also makes sense to176

require that there is only one such optimal alternative – indeed, as we have mentioned, if177

there are several equally good optimal alternatives, this means that the original optimal-178

ity criterion is not final, that we can use this non-uniqueness to optimize something else,179

i.e., in effect, to modify the original criterion into a final (or at least “more final”) one.180

Invariance. There is an additional natural requirement for possible optimality criteria,181

which is related to the fact that the original “grid" Z× Z has lots of symmetries, i.e.,182

transformations that transform this “grid” into itself.183

For example, if we change the starting point of the coordinate system to a new184

point (x0, y0), then a point that originally had coordinates (x, y) now has coordinates185

(x− x0, y− y0). It makes sense to require that the relative quality of two different families186

F and F ′ will not change if we simply change the starting point.187

Similarly, we can change the direction of the x-axis, then a point (x, y) becomes188

(−x, y). If we change the direction of the y-axis, we get a transformation (x, y)→ (x,−y).189

Finally, we can rename the coordinates: what was x will become y and vice versa; this190

corresponds to the transformation (x, y)→ (y, x). Such transformations should also not191

affect the relative quality of different families.192

Comment. Please note that we are not requiring that the family F of sets be shift-covariant,193

what we require is that the optimality criterion is shift-covariant.194

We are ready. Now, we are ready for the precise formulation of the problem.195
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3. Definitions and the Main Result196

Definition.197

• By an family, we mean a family of non-empty subsets of the “grid” Z× Z, a family in198

which:199

– all sets from this family are disjoint, and200

– at least one set from this family has more than one element.201

• By an optimality criterion, we mean a pair of relations (<,∼) on the class of all possible202

families that satisfy the following conditions:203

– if F < F ′ and F ′ < F ′′, then F < F ′′;204

– if F < F ′ and F ′ ∼ F ′′, then F < F ′′;205

– if F ∼ F ′ and F ′ < F ′′, then F < F ′′;206

– if F ∼ F ′ and F ′ ∼ F ′′, then F ′ ∼ F ′′;207

– we have F ∼ F for all F ; and208

– if F < F ′, then we cannot have F ∼ F ′.209

• We say that a family F is optimal with respect to the optimality criterion (<,∼) if for210

every other family F ′, we have either F ′ < F or F ′ ∼ F .211

• We say that the optimality criterion is final if there exists exactly one family which is212

optimal with respect to this criterion.213

• By a transformation T : Z×Z, we mean one of the following transformations: Tx0,y0(x, y) =214

(x− x0, y− y0), T−+(x, y) = (−x, y), T+−(x, y) = (x,−y), and T↔(x, y) = (y, x).215

• For each family F and for each transformation T, by the result T(F ) of applying the216

transformation T to the family F , we mean the family T(F ) = {T(S) : S ∈ F}, where,217

for any set S, T(S) def
= {T(x, y) : (x, y) ∈ S}.218

• We say that the optimality criterion is invariant if for all transformations T, F < F ′219

implies that T(F ) < T(F ′), and F ∼ F ′ implies that T(F ) ∼ T(F ′).220

Terminological comment. To avoid possible misunderstandings, let us emphasize that here,221

we consider several levels of sets, and to avoid confusion, we use different terms for sets222

from different levels:223

• first, we consider points (x, y) ∈ Z×Z;224

• second, we consider sets of points S ⊆ Z×Z; we call them simply sets;225

• third, we consider sets of sets of points F = {S, S′, . . .}; we call them families;226

• finally, we consider the set of all possible families {F ,F ′, . . .}; we call this a class.227

Comment about the requirements. In the previous text, we argued that for each family228

F , the union of all its sets ∪{S : S ∈ F} should coincide with the whole “grid” Z×Z.229

However, in our definition of an alternative, we did not impose this requirement. We230

omitted this requirement to make our result stronger – since, as we see from the following231

Proposition, this requirement actually follows from all the other requirements.232

Mathematical comment. The pair of relations (<,∼) between families of subsets forms233

what is called a pre-order or quasi-order. This notion is more general than partial order,234

since, in contrast to the definition of the partial order, we do not require that if a ≤ b and235

b ≤ a, then a = b: in principle, we can have a ∼ b for some a 6= b.236

Proposition. For every final invariant optimality criterion, the optimal family is equal, for some237

integer ` ≥ 1, to one of the following two families:238

• the family of all the sets S`,x0,y0

def
= {(x0 + ` · nx, y0 + ` · ny) : nx, ny ∈ Z} corresponding239

to all possible pairs of integers (x0, y0) for which 0 ≤ x0, y0 < `;240

• the family of all the sets

S′`,x0,y0

def
= {(x0 + ` · nx, y0 + ` · ny) : nx, ny ∈ Z and nx + ny is even}

corresponding to all possible pairs of integers (x0, y0) for which 0 ≤ x0, y0 < `.241
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Comments.242

• This proposition takes care of all invariant (and final) optimality criteria. Thus, it243

should work for all usual criteria based on misclassification rate, time of calculation,244

used memory, or any other used in neural networks: indeed, if one method is better245

than another for images in general, it should remain to be better if we simply shift246

all the images or turn all the images upside down. Images can come as they are, they247

can come upside down, they can come shifted, etc. If for some averaging criterion,248

one method works better for all possible images but another method works better249

for all upside-down versions of these images – which is, in effect, the same class of250

possible images – then from the common sense viewpoint, this would mean that251

something is not right with this criterion.252

• The first possibly optimal case corresponds to dilated convolution. In the second253

possibly optimal case, the optimal family contains similar but somewhat different254

sets; an example of such a set is given in Fig. 7.255
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256

257

258

Figure 7. A set from the second possibly optimal family259

Thus, this result explains the effectiveness of dilated convolution – and also provides260

us with a new alternative worth trying.261

• The following proof is similar to several proofs presented in [4].262

Proof.263

1◦. Since the optimality criterion is final, there exists exactly one optimal family Fopt.264

Let us first prove that this family is itself invariant, i.e., that T(Fopt) = Fopt for all265

transformations T.266

Indeed, the fact that the family Fopt is optimal means that for every family F , we267

have F < Fopt or F ∼ Fopt. Since this is true for every family F , it is also true for268

every family T−1(F ), where T−1 denotes inverse transformation (i.e., a transformation269

for which T(T−1(x, y)) = (x, y)). Thus, for every family F , we have either T−1(F ) <270

Fopt or T−1(F ) ∼ Fopt. Due to invariance, we have F = T(T−1(F )) < T(Fopt) or271

F ∼ T(Fopt). By definition of optimality, this means that the alternative T(Fopt) is also272

optimal. However, since the optimality criterion is final, there exists exactly one optimal273

family, so T(Fopt) = Fopt.274

The statement is proven.275

2◦. Let us now prove that the optimal family contains a set S′ that, in its turn, contains276

the point (0, 0) and some point (x, y) 6= (0, 0).277

Indeed, by definition of a family, every family – including the optimal family –
contains at least one set S that has at least two points. Let S be any such set from the
optimal family, and let (x0, y0) be any of its points. Then, due to Part 1 of this proof, the

set S′ def
= Tx0,y0(S) also belongs to the optimal family, and this set contains the point

Tx0,y0(x0, y0) = (x0 − x0, y0 − y0) = (0, 0).
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Since the set S had at least two different points, the set S′ = Tx0,y0(S) also contains278

at least two different points. Thus, the set S′ must contain a point (x, y) which is different279

from (0, 0).280

The statement is proven.281

3◦. In the following text, by S′, we will mean a set from the optimal family Fopt whose282

existence is proven in Part 2 of this proof: namely, a set that contains the point (0, 0) and283

a point (x, y) 6= (0, 0).284

4◦. Let us prove that if the set S′ contains a point (x, y), then this set also contains the285

points (x,−y), (−x, y), and (y, x).286

Indeed, due to Part 1 of this proof, with the set S′ the optimal family Fopt also287

contains the set T+−(S′). This set contains the point T+−(0, 0) = (0, 0). Thus, the sets S′288

and T+−(S′) have a common element (0, 0). Since different sets from the optimal family289

must be disjoint, it follows that the sets S′ and T+−(S′) must coincide. The set T+−(S′)290

contains the points (x,−y) for each point (x, y) ∈ S. Since T+−(S′) = S′, this implies291

that for each point (x, y) ∈ S′, we have (x,−y) ∈ T+−(S′) = S′.292

Similarly, we can prove that (−x, y) ∈ S′ and (y, x) ∈ S′. The statement is proven.293

5◦. By combining the two conclusions of Part 4 – that (x,−y) ∈ S′ and that therefore
T−+(x,−y) = (−x,−y) ∈ S′, we conclude that for every point (x, y) ∈ S′, the point

−(x, y) def
= (−x,−y)

is also contained in the set S′.294

6◦. Let us prove that if the set S′ contains two points (x1, y1) and (x2, y2), then it also
contains the point

(x1, y1) + (x2, y2)
def
= (x1 + x2, y1 + y2).

Indeed, due to Part 1 of this proof, the set T−x2,−y2(S
′) also belongs to the optimal

family. This set shares an element

T−x2,−y2(0, 0) = (0− (−x2), 0− (−y2)) = (x2, y2)

with the original set S′. Thus, the set T−x2,−y2(S
′) must coincide with the set S′. Due to

the fact that (x1, y1) ∈ S′, the element

T−x2,−y2(x1, y1) = (x1 − (−x2), y1 − (−y2)) = (x1 + x2, y1 + y2)

belongs to the set Tx1,y1(S
′) = S′. The statement is proven.295

7◦. Let us prove that if the set S′ contains a point (x, y), then, for each integer c, this set
also contains the point

c · (x, y) = (c · x, c · y).

Indeed, if c is positive, this follows from the fact that

(c · x, c · y) = (x, y) + . . . + (x, y) (c times).

When c is negative, then we first use Part 5 and conclude that (−x,−y) ∈ S′, and then296

conclude that the point (|c| · (−x), |c| · (−y)) = (c · x, c · y) is in the set S′.297

8◦. Let us prove that if the set S′ contains points (x1, y1), . . . , (xn, yn), then for all integers
c1, . . . , cn, it also contains their linear combination

c1 · (x1, y1) + . . . + cn · (xn, yn) = (c1 · x1 + . . . + cn · xn, c1 · y1 + . . . + cn · yn).

Indeed, this follows from Parts 6 and 7.298
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9◦. The set S′ contains some points which are different from (0, 0), i.e., points for which299

at least one of the integer coordinates is non-zero. According to Parts 4 and 5, we can300

change the signs of both x and y coordinates and still get points from S′. Thus, we can301

always consider points with non-negative coordinates.302

Let d denote the greatest common divisor of all positive values of the coordinates303

of points from S′.304

If a value x appears as an x-coordinate of some point (x, y) ∈ S′, then, due to Part 4,
we have (x,−y) ∈ S′ and thus, due to Part 5,

(x, y) + (x,−y) = (2x, 0) ∈ S′.

Similarly, if a value y appears as a y-coordinate of some point (x, y) ∈ S′, then we get305

(0, 2y) ∈ S′ and thus, due to Part 3, (2y, 0) ∈ S′.306

It is a known that a common divisor d of the values v1, . . . , vn can be represented as
a linear combination of these values:

d = c1 · v1 + . . . + cn · vn.

For each value vi, we have (2vi, 0) ∈ S′, thus, for

2d = c1 · (2v1) + . . . + cn · (2vn),

by Part 8, we get (2d, 0) ∈ S′. Due to Part 4, we thus have (0, 2d) ∈ S′, and due to Parts307

6 and 7, all points (nx · (2d), ny · (2d)) for integers nx and ny also belong to the set S′.308

If S′ has no other points, then for the set containing (0, 0), we indeed conclude that309

this sets is the same as what we described for dilated convolution, with ` = 2d.310

10◦. What if these are other points in the set S′? Since d is the greatest common divisor311

of all the coordinate values, each of these points has the form (cx · d, cy · d) for some312

integers cx and cy. Since this point is not of the form (nx · (2d), ny · (2d)), this means that313

either cx, or cy is an odd number – or both.314

Let us first consider the case when exactly one of the values cx and cy is odd.
Without losing generality, let us assume that cx is odd, so cx = 2nx + 1 and cy = 2ny for
some integers nx and ny. Due to Part 9, we have (2nx · d, 2ny · d) ∈ S′, so the difference

((2nx + 1) · d, 2ny · d)− (2nx · d, 2ny · d) = (d, 0)

also belongs to the set S′. Thus, similarly to Part 9, we can conclude that for every two315

integers cx and cy, we have (cx · d, cy · d) ∈ S′. So, in this case, S′ coincides, for ` = d,316

with the set corresponding to dilated convolution.317

The only remaining case is when not all points (cx · d, cy · d) belong to the set S′.
This means that for some such point both values cx and cy are odd: cx = 2nx + 1 and
cy = 2ny + 1 for some integers nx and ny. Due to Part 9, we have (2nx · d, 2ny · d) ∈ S′,
so the difference

((2nx + 1) · d, (2ny + 1) · d)− (2nx · d, 2ny · d) = (d, d)

also belongs to the set S′.318

Since, due to Part 9, we have (2nx · d, 2ny · d) ∈ S′ for all nx and ny, we conclude,319

by using Part 5, that ((2nx + 1) · d, (2ny + 1) · d) ∈ S′. So, all pairs for which both320

coordinates are odd multiples of d are in S′. Thus, we get the new case described in the321

Proposition.322

11◦. The previous results were about the sets containing the point (0, 0).323

For all other sets S containing some other point (x0, y0), we get the same result if324

we take into account that the optimal family is invariant, and thus, with the set S, the325
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optimal family also contains the set Tx0,y0(S) that contains (0, 0) and is, thus, equal either326

to the family corresponding to dilated convolution or to the new similar family.327

The proposition is proven.328

4. Conclusions and Future Work329

Conclusions. One of the efficient machine learning ideas is the idea of a convolutional330

neural network. Such networks use convolutional layers, in which the output value at331

each point is a combination of input data corresponding to several neighboring points.332

A reasonable idea is to restrict ourselves to only some of the neighboring points. It333

turns out that out of all such restrictions, the best results are obtained when we only use334

neighboring points for which the differences in both coordinates are divisible by some335

constant `. Networks implementing such restrictions are known as dilated convolutional336

neural networks.337

In this paper, we provide a theoretical explanation for this empirical conclusion.338

Future work. This paper describes a general abstract result: that for any optimality339

criterion that satisfies some reasonable properties, some dilated convolution is optimal.340

To be practically useful, it is desirable to analyze which dilated convolutions are optimal341

for different practical situations and for specific criteria uses in machine learning, such342

as misclassification rate, time of calculation, used memory, etc. (and the combination of343

these criteria). It is also desirable to analyze what size neighborhood should we choose344

for different practical situations and for different criteria.345
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