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Abstract: One of the most effective image processing techniques is the use of convolutional neural
networks that use convolutional layers. In each such layer, the value of the output at each point
is a combination of input data corresponding to several neighboring points. To improve the
accuracy, researchers have developed a version of this technique, in which only data from some
of the neighboring points is processed. It turns out that the most efficient case — called dilated
convolution — is when we select the neighboring points whose differences in both coordinates are
divisible by some constant £. In this paper, we explain this empirical efficiency by proving that for
all reasonable optimality criteria, dilated convolution is indeed better than possible alternatives.

Keywords: convolutional neural networks; dilated neural networks; optimality

1. Introduction

At present, one of the most efficient techniques in image processing and in other
areas is a convolutional neural network; see, e.g., [1]. Convolutional neural networks
include layers performing convolution.

The input data to a convolution is characterized by a function F : D — R, where

D %f (ZU[X,X]) x (ZUY,Y)) is the set of all pairs of integers (x,y) for which X <
x < Xand Y <y <Y. In other words, the set D is a bounded part of the potentially
infinite “grid” Z x Z formed by all the 2-D points (x,y) with integer coefficients. For
example, if the input is a grey-scale image, then F(x,y) is the image’s intensity in the
pixel (x,y).

The output signal of a convolution is described by a function G : D — R, where

Glxy)= ) kGj)-Flx—iy—j), (1)

—L<ij<L

for some function k : (ZU [—L,L]) x (ZU[—L,L]) — R known as a filter.

The output signal G(x,y) corresponding to the point (x,y) is determined by the
values F(x — i,y — j) of the input signals at points (x — i,y — j) corresponding to |i| < L
and |j| < L. This is illustrated by Fig. 1, where, for L = 1 and for a point (x,y) marked
by an asterisk, we show all the points (x',y") = (xo — i, yo — j) that determine the value
G(x,y). For convenience, points (x’,y’) that do not affect the value G(x, y), are marked
by zeros.
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Figure 1: Convolution: case of L =1

For L = 2, a similar picture has the following form:

Figure 2: Convolution: case of L = 2

Originally, convolutional neural networks used filters in which all the values k(i, j)
for |i|,|j| < L can be non-zero. It turned out, however, that we can achieve a better
accuracy if we consider filters in which some of the values k(i, j) for —L < i,j < L are
fixed at 0; see, e.g., [3,5,6]. In Fig. 3, we show an example of such a situation, when L = 2
and only values k(i, j) for which both i and j are even are allowed to be non-zero.
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Figure 3. Case when L = 2 and only values k(i, j) with even i and j can be no-zero

In general, it turned out that such a restriction works best if we only allow k(i,j) # 0
for pairs (i, j) which are divisible by some integer /, i.e., if we take

G(xy) = Y k(i,j) - Fx =i,y —J). (2)
—L<ij<L: i/(€T, j/ LT
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In this case, the output signal G(x, y) can be written in the following equivalent form:

Gxy)= L K@j)-F(x—t-iy—j), 3)

—L<i,j<L
where we denoted L def L/¢, ?d:ef i/l, 761:ef j/ ¥, and %(?,7) def k(ﬁ zN, l- D . The resulting
networks are known as dilated convolutional neural networks, since skipping some
points (i, ]) in the description of the filter is kind of equivalent to extending (dilating)
the distance between the remaining points; see, e.g., [3,5,6].
In principle, we could select other points (i, j) at which the filter can be non-zero.
For example, we could select points for which j is even, but i can be any integer:

O 0 o O o0 o0 o
0 X X X X X 0
O 0 0O O 0O 0 o0
0 X X ¥ X X 0
O 0 0O O O 0 o0
0 X X X X X 0
O 0 o0 O 0O 0 o0

Figure 4. Case when L = 2 and only values k(i, j) with even j can be non-zero

Alternatively, for L = 2, as points (i, j) at which k(i, j) can be non-zero, we could
select the points (0,0), (0, £1), (£1,0), and (£2, £2), see Fig. 5.
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Figure 5. A possible selection of points (i, j) for which k(i, j) can be no-zero

However, empirical evidence shows that the selection corresponding to dilated
convolution — when we select points for which 7 and j are both divisible by some integer
¢ —works the best [3,5,6].
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To the best of our knowledge, there is no theoretical explanation for this empirical
result — that dilated convolution leads to better results that selecting other sets of non-
zero-valued points (7, j). The main objective of this paper is to provide such an explanation.

Comment. Let us emphasize that the only objective of this paper is to explain this em-
pirical fact, we are not yet at a stage where we can propose a new method or even any
improvements to the known methods.

2. Analysis of the Problem

Let us reformulation this situation in geometric terms: case of traditional convolu-
tion. In the original convolution formula (1), to find the value the output signal G(x,y)
at a point (x,y), we need to know the values F(x', ") the input signal at all the points
(x/,y') of the type (x — i,y — j) for |i],|j| < L. We can reformulate it by saying that
we need to know the values F(x’,/) at all the points (x’,y’) at which the Manhattan

distance
def

dy((x,y), (¢, y)) = max(|x — '], ly = y/']), (4)

does not exceed L:

G(x,y) = Y. k(x —x",y —y') - F(x',y"). (5)
(x"y")eD: dp((xy),(x'y')) <L

That we use, in this formula, the bounded subset D of the “grid" Z x Z and not the

whole set § & 7 x Z only matters at the border of the domain D. So, to simplify our
formulas, we can follow the usual tradition (see, e.g., [5]) and simply use the whole set
S = 7Z x Z instead of the bounded set D:

G(x,y) = p k(x =2y —y) - F(x,y). (6)
(¢y)€8: du(x), (¢ )<L

Comment. Note that the set S is potentially infinite. What makes the set of all the points
(x/,y) — that affects the value G(x,y) — finite is the restriction dy((x,y), (x',y’)) < L,
whose meaning is that such points (x’, ") should belong to the corresponding neighbor-
hood of the point (x,y).

Case of dilated convolution. The dilated convolution can be described in a similar way.
Namely, we can describe the formula (2) as

G(x,y) = ), k(x =",y —y')-F(x',y), (7)
(' y")eS(xy): dm((xy),(xy')<L

tbe only difference is that, in contrast to the usual convolution, when the same set
S = Z x Z could be used for all the points (x, y), here, in general, we may need different
sets S(x,y) for different points (x, y).

For example, if ¢ = 2, then we need four such sets:
e for points (x,y) for which both x and y are even, the formula (7) holds for

5(0,0) =5(0,2) =... = S((fozz) def {(x,y) EZ xZ:xand yareeven};  (8)

e for points (x,y) for which x is even but y is odd, the formula (7) holds for

$(0,1) =5(0,3) =...= S((fl:Z) def {(x,y) EZ xZ: xisevenand yis odd}; (9)
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e for points (x,y) for which x is odd but y is even, the formula (7) holds for

S(1,0)=5(1,2) =... = Sfozz) def {(x,y) € Z x Z: xis odd and y is even}; (10)

e finally, for points (x,y) for which x and y are both odd, the formula (7) holds for

5(0,1)=5(0,3)=...= Sﬁﬂ) def {(x,y) €ZxZ:xandyareodd}. (11)

In this case, instead of the single set S(x,y) = S (as in the case of the traditional
convolution), we have a set of such sets

(=2) o(l=2) o((=2) ((=2
]::{5((),0 )’S((),l )'55,0 )’Sg,l )}‘ (12)

To avoid confusion, we will call subsets of the original “grid" Z x Z sets, while the set
of such sets will be called a family. In these terms, the formula (7) can be described as
follows:

G(xy) = ) k(x—x",y—y')-F(x',y), (13)
() €S (xy): dm((xy), (¥ ) <L

where S(x,y) denotes the set S € F from the family F that contains the point (x, ).

In this representation, all four sets S from the family F are infinite — just like the set
S corresponding to the traditional convolution is infinite. Similarly to the traditional
convolution, what makes the set of all the points (x/,y’) — that affects the value G(x,y) -
finite is the restriction dp;((x,y), (x/,y')) < L, whose meaning is that such points (x’,’)
should belong to the corresponding neighborhood of the point (x, y).

Fig. 6 describes which of the four sets S € F corresponds to each point (x, y) from
the “grid” Z x Z:

(¢=2)

(¢=2) (¢=2)
SlJ SOJ Sll
(¢=2) (¢=2) (£=2)
SLO SOD Slﬂ
(¢=2) (¢=2) (£=2)
SlJ SOJ Sli

Figure 6. Sets S(x, y) corresponding to different points (x,y)

For ¢ = 3, we can get a similar reformulation, with the family

(=3 (=3 (=3 (=3 (=3 (=3 (=3 (=3 (=3
F={s00 786150 7 Stg S Sis T Shg T Shy i Sas e (14)

1(523) is the set of all the pairs (x,y) € Z x Z in which both differences x — i and

y — j are divisible by 3.

where S

Other cases. Such a representation is possible not only for dilated convolution. For
example, the above case when we allow arbitrary value i and require the value j to be
even can be described in a similar way, with

F ={S0,51}, (15)

where:
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e for points (x,y) for which y is even, we take

5(0,0) = S(1,0) = ... = So ¥ {(x,y) € Z x Z : yis even}, (16)

e and for points (x,y) for which y is odd, we take

5(0,1)=S(1,1)=...= 51 ¥ {(x,y) € Zx Z:yis odd}. (17)

In principle, we can also have families that have infinite number of sets; an example of
such a family will be given below.

General case. In the general case, we get the following situation:

e we have a family F of subsets of the “grid” Z x Z;
e the value G(x,y) of the output signal at a point (x, y) is determined by the formula

G(x,y) = )y k(x,x',y,y') - F(x', '), (18)
(. y)es(xy): dm((xy)(x'y')) <L

for some values k(x,x’,y,y"), where S(x,y) denotes the set S € F from the family
F that contains the point (x,y).

For the formula (18) to uniquely determine the value G(x,y), we need to make sure that
the set S(x, y) is uniquely determined by the point (x, y), i.e., that for each point (x,y),
the family F contain one and only one set S that contains this point. In other words:

e  different sets from the family F must be disjoint, and
e the union of all the sets S € F must coincide with the whole “grid” Z x Z.

In mathematical terms, the family F must form a partition of the “grid” Z x Z.

Comment. To avoid possible confusion, it is worth mentioning that while different sets S
from the family F are disjoint, this does not preclude the possibility that sets S(x,y) and
S(x,y") corresponding to different points (x,y) # (x’,y') can be identical. For example,
in the description of the traditional convolution, the family F consists of only one set

F = {S} In this case, for all points (x,y) and (x/,y'), we have S(x,y) = S(x,y') = S.
In terms of sets corresponding to different points, disjointness means that if the sets
S(x,y) and S(x’,y’) are different, then these sets must be disjoint: S(x,y) US(x',y’) = @.

We do not a priori require shift-covariance. Please note that we do not a priori require
that the sets S(x, ) and S(xo, yo) corresponding to two different points (x, y) and (xo, yo)
should be obtained from each other by shift — this property is known as shift covariance
and as satisfied both for the usual convolution and for the dilated convolution.

It should be emphasized, however, that we will show that this shift-covariance
property holds for the optimal arrangement.

Let us avoid the trivial case. From the purely mathematical viewpoint, we can have a
partition of the “grid” Z x Z into one-point sets {(x,y)}. This is an example when the
family F has infinitely many subsets.

In this case, no matter what value L we choose, the formula (18) implies that the
value G(x, y) of the output signal at a point (x, y) is determined only by the value F(x,y)
of the input signal at this same point. In this case, there is no convolution, i.e., no
combination of values F(x,y) at different points (x, y). To avoid this situation, we will
additionally require that at least one set from the family F should contain more than
one element.

What we plan to do. We will consider all possible families F that form a partition of
the “grid” Z x 7, and we will show that for all optimality criteria that satisfy some
reasonable conditions, the optimal family is either the family of sets corresponding to
the dilated convolution - or a natural modification of this family.
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Let us describe what we mean by an optimality criteria.

What does “optimal” mean? In our case, we select between different families of sets F,
F',...In general, we select between alternatives g, b, etc. Out of all possible alternatives,
we want to select an optimal one. What does “optimal” mean?

In many cases, “optimal” is easy to describe:

e we have an objective function f(a) that assigns a numerical value to each alternative
a —e.g., the average approximation error of the numerical method a for solving a
system of differential equations, and

e optimal means we select an alternative for which the value of this objective function
is the smallest possible (or, for some objective functions, the largest possible).

However, this is not the only possible way to describe optimality.

For example, if we are minimizing the average approximation error, and there
are several different numerical methods with the exact same smallest value of average
approximation error, then we can use this non-uniqueness to select, e.g., the method with
the shortest average computation time. In this case, we have, in effect, a more complex
preference relation between alternatives than in the case when decision is made based
solely on the value of the objective function. Specifically, in this case, an alternative b is
better than the alternative a — we will denote it by a < b —if:

e either we have f(b) < f(a),
e orwehave f(a) = f(b) and g(b) < g(a).
If this still leaves several alternatives which are equally good, then we can optimize
something else and thus, have an even more complex optimality criterion.

In general, having an optimality criterion means that we are able to compare pairs
of alternatives — at least some such pairs — and conclude that:

e for some of these pairs, we havea < b,

e for some of these pairs, we have b < a, and

e for some others pairs, we conclude that alternatives a and b are, from our viewpoint,
of equal value; we will denote this by a ~ b.

Of course, these relations must satisfy some reasonable properties. For example, if b is
better than 4, and c is better than b, then ¢ should be better than a; in mathematical terms,
the relation < must be transitive.

What we must have is some alternative which is better than or equivalent to all
others — otherwise, the optimization problem has no solutions. It also makes sense to
require that there is only one such optimal alternative —indeed, as we have mentioned, if
there are several equally good optimal alternatives, this means that the original optimal-
ity criterion is not final, that we can use this non-uniqueness to optimize something else,
i.e., in effect, to modify the original criterion into a final (or at least “more final”) one.

Invariance. There is an additional natural requirement for possible optimality criteria,
which is related to the fact that the original “grid" Z x Z has lots of symmetries, i.e.,
transformations that transform this “grid” into itself.

For example, if we change the starting point of the coordinate system to a new
point (xg, yo), then a point that originally had coordinates (x,y) now has coordinates
(x — x0,¥ — yo). It makes sense to require that the relative quality of two different families
F and F' will not change if we simply change the starting point.

Similarly, we can change the direction of the x-axis, then a point (x,y) becomes
(—x,y). If we change the direction of the y-axis, we get a transformation (x,y) — (x, —y).
Finally, we can rename the coordinates: what was x will become y and vice versa; this
corresponds to the transformation (x,y) — (v, x). Such transformations should also not
affect the relative quality of different families.

Comment. Please note that we are not requiring that the family F of sets be shift-covariant,
what we require is that the optimality criterion is shift-covariant.

We are ready. Now, we are ready for the precise formulation of the problem.
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3. Definitions and the Main Result

Definition.

e By an family, we mean a family of non-empty subsets of the “grid” Z x Z, a family in
which:

- all sets from this family are disjoint, and
—  at least one set from this family has more than one element.

e  Byan optimality criterion, we mean a pair of relations (<, ~) on the class of all possible
families that satisfy the following conditions:

- fF<Fand F' < F", then F < F";
- fF<Fand F' ~ F", then F < F";
- fF~F and F' < F", then F < F";
- fF~F and F' ~F", then F' ~ F";
- wehave F ~ F for all F; and

- if F < F', then we cannot have F ~ F'.

o We say that a family F is optimal with respect to the optimality criterion (<, ~) if for
every other family F', we have either F' < F or F' ~ F.

o We say that the optimality criterion is final if there exists exactly one family which is
optimal with respect to this criterion.

e Byatransformation T : Z x Z, we mean one of the following transformations: Ty, (x,y) =
(x —xo,4 = y0), T+ (x,y) = (=x,y), T (x,y) = (x, —y), and T, (x,y) = (y, x)-

e  For each family F and for each transformation T, by the result T(F) of applying the
transformation T to the family F, we mean the family T(F) = {T(S) : S € F}, where,
forany set S, T(S) et {T(x,y): (x,y) € S}.

e  We say that the optimality criterion is invariant if for all transformations T, F < F'
implies that T(F) < T(F"), and F ~ F' implies that T(F) ~ T(F').

Terminological comment. To avoid possible misunderstandings, let us emphasize that here,
we consider several levels of sets, and to avoid confusion, we use different terms for sets
from different levels:

first, we consider points (x,y) € Z X Z;

second, we consider sets of points S C Z x Z; we call them simply sets;

third, we consider sets of sets of points F = {S, 5/, ...}; we call them families;
finally, we consider the set of all possible families {F, F’,...}; we call this a class.

Comment about the requirements. In the previous text, we argued that for each family
F, the union of all its sets U{S : S € F} should coincide with the whole “grid” Z x Z.
However, in our definition of an alternative, we did not impose this requirement. We
omitted this requirement to make our result stronger — since, as we see from the following
Proposition, this requirement actually follows from all the other requirements.

Mathematical comment. The pair of relations (<, ~) between families of subsets forms
what is called a pre-order or quasi-order. This notion is more general than partial order,
since, in contrast to the definition of the partial order, we do not require that if 2 < b and
b < a, then a = b: in principle, we can have a ~ b for some a # b.

Proposition. For every final invariant optimality criterion, the optimal family is equal, for some
integer ¢ > 1, to one of the following two families:

o the family of all the sets Sy, aef {(xo +£€-nyx,y0+ £ -ny) : ny,ny € Z} corresponding
to all possible pairs of integers (xo, o) for which 0 < xo,yo < ¢;
o the family of all the sets

SQ/XWO def {(xo+£-ny,yo+£-ny) : ny,ny € Zand ny + ny is even}

corresponding to all possible pairs of integers (xo, o) for which 0 < xo,yo < L.
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Comments.

e  This proposition takes care of all invariant (and final) optimality criteria. Thus, it
should work for all usual criteria based on misclassification rate, time of calculation,
used memory, or any other used in neural networks: indeed, if one method is better
than another for images in general, it should remain to be better if we simply shift
all the images or turn all the images upside down. Images can come as they are, they
can come upside down, they can come shifted, etc. If for some averaging criterion,
one method works better for all possible images but another method works better
for all upside-down versions of these images — which is, in effect, the same class of
possible images — then from the common sense viewpoint, this would mean that
something is not right with this criterion.

e  The first possibly optimal case corresponds to dilated convolution. In the second
possibly optimal case, the optimal family contains similar but somewhat different
sets; an example of such a set is given in Fig. 7.

X
0

0 0
X X
0K o0
X X
0 0

o X o X o
X o X o X
X o X o X
o X o X o

0
X
Figure 7. A set from the second possibly optimal family

Thus, this result explains the effectiveness of dilated convolution — and also provides
us with a new alternative worth trying.
e  The following proof is similar to several proofs presented in [4].

Proof.

1°. Since the optimality criterion is final, there exists exactly one optimal family Fopt.
Let us first prove that this family is itself invariant, i.e., that T(}"Opt) = Fopt for all
transformations T.

Indeed, the fact that the family Fpt is optimal means that for every family 7, we
have F < Fopt or F ~ Fopt. Since this is true for every family F, it is also true for
every family T~1(F), where T~! denotes inverse transformation (i.e., a transformation
for which T(T~(x,y)) = (x,y)). Thus, for every family F, we have either T~1(F) <
Fopt or T"H(F) ~ Fopt. Due to invariance, we have F = T(T"1(F)) < T(Fopt) or
F ~ T(Fopt). By definition of optimality, this means that the alternative T'(Fqpt) is also
optimal. However, since the optimality criterion is final, there exists exactly one optimal
family, so T(Fopt) = Fopt-

The statement is proven.

2°. Let us now prove that the optimal family contains a set S’ that, in its turn, contains
the point (0,0) and some point (x,y) # (0,0).

Indeed, by definition of a family, every family — including the optimal family —
contains at least one set S that has at least two points. Let S be any such set from the

optimal family, and let (xo, yo) be any of its points. Then, due to Part 1 of this proof, the

set §' 4 Txo,y (S) also belongs to the optimal family, and this set contains the point

Txo,y0 (%0, Y0) = (X0 — X0, %0 — yo) = (0,0).
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Since the set S had at least two different points, the set S’ = Ty 4, (S) also contains
at least two different points. Thus, the set S’ must contain a point (x, y) which is different
from (0,0).

The statement is proven.

3°. In the following text, by S’, we will mean a set from the optimal family Fop whose
existence is proven in Part 2 of this proof: namely, a set that contains the point (0,0) and

a point (x,y) # (0,0).
4°. Let us prove that if the set S’ contains a point (x,y), then this set also contains the

points (x, —y), (—x,y), and (y, x).

Indeed, due to Part 1 of this proof, with the set S’ the optimal family Fopt also
contains the set T} (S’). This set contains the point T} —(0,0) = (0,0). Thus, the sets S’
and T;_(S’) have a common element (0,0). Since different sets from the optimal family
must be disjoint, it follows that the sets S’ and T _ (S’) must coincide. The set T _(S')
contains the points (x, —y) for each point (x,y) € S. Since T _(S") = &/, this implies
that for each point (x,y) € S/, we have (x, —y) € T{_(§') = 5.

Similarly, we can prove that (—x,y) € S’ and (y, x) € S'. The statement is proven.

5°. By combining the two conclusions of Part 4 — that (x, —y) € S’ and that therefore
T_4(x,—y) = (—x,—y) € §, we conclude that for every point (x,y) € S', the point

def
—(xy) = (—x,—y)
is also contained in the set S'.

6°. Let us prove that if the set S’ contains two points (x1,y1) and (x2,y2), then it also

contains the point

f
(x1,91) + (x2,12) & (31 + 22,51 + 12).

Indeed, due to Part 1 of this proof, the set T_y,,(S’) also belongs to the optimal
family. This set shares an element

T-xy,—y,(0,0) = (0 — (=x2),0 — (—y2)) = (x2,42)

with the original set S’. Thus, the set T_y, —, (S") must coincide with the set S’. Due to
the fact that (xq,7) € S/, the element

Ty (¥1,1) = (1 = (=x2),y1 — (=92)) = (1 + X2, 41+ ¥2)
belongs to the set Ty, ;, (S) = S'. The statement is proven.

7°. Let us prove that if the set S’ contains a point (x, y), then, for each integer c, this set
also contains the point

¢ (x,y) = (- x,c-y).
Indeed, if c is positive, this follows from the fact that

(c-x,c-y)=(xy)+...+ (x,y) (c times).

When c¢ is negative, then we first use Part 5 and conclude that (—x, —y) € S, and then
conclude that the point (|¢| - (—x), |c| - (—y)) = (¢ x,¢-y) is in the set S'.

8°. Let us prove that if the set S’ contains points (x1,y1), ..., (X4, yn), then for all integers
c1,.-.,Cn, it also contains their linear combination

cr-(x,y)+ . Fen (xnyn) =(c1-x1+...Fcn-Xn,c1 Y1+ .. FCnYn)

Indeed, this follows from Parts 6 and 7.
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9°. The set S’ contains some points which are different from (0, 0), i.e., points for which
at least one of the integer coordinates is non-zero. According to Parts 4 and 5, we can
change the signs of both x and y coordinates and still get points from S’. Thus, we can
always consider points with non-negative coordinates.

Let d denote the greatest common divisor of all positive values of the coordinates
of points from S’

If a value x appears as an x-coordinate of some point (x,y) € S, then, due to Part 4,
we have (x, —y) € S’ and thus, due to Part 5,

(x,y) + (x,—y) = (2x,0) € S'.

Similarly, if a value y appears as a y-coordinate of some point (x,y) € S, then we get
(0,2y) € S’ and thus, due to Part 3, (2y,0) € S'.

It is a known that a common divisor 4 of the values vy, ..., v, can be represented as
a linear combination of these values:

d=c1-v1+...+cy- vy
For each value v;, we have (2v;,0) € S, thus, for
2d =c1-(201) + ... +cn - (20n),

by Part 8, we get (2d,0) € S'. Due to Part 4, we thus have (0,2d) € S’, and due to Parts
6 and 7, all points (ny - (2d),ny - (2d)) for integers n, and n, also belong to the set S'.

If S’ has no other points, then for the set containing (0,0), we indeed conclude that
this sets is the same as what we described for dilated convolution, with ¢ = 24.

10°. What if these are other points in the set 5'? Since d is the greatest common divisor
of all the coordinate values, each of these points has the form (cx - d,cy - d) for some
integers ¢, and c;,. Since this point is not of the form (1, - (2d), ny - (2d)), this means that
either ¢y, or Cy is an odd number - or both.

Let us first consider the case when exactly one of the values cy and ¢y is odd.
Without losing generality, let us assume that cy is odd, so ¢y = 25y + 1 and ¢y, = 2n,, for
some integers 1, and ny. Due to Part 9, we have (2ny - d, 2ny -d ) € §/, so the difference

((2nx+1)-d,2n, -d) — (2ny-d,2ny-d) = (d,0)

also belongs to the set S’. Thus, similarly to Part 9, we can conclude that for every two
integers ¢y and ¢y, we have (cx - d, cy - d) € S'. So, in this case, S’ coincides, for ¢ = d,
with the set corresponding to dilated convolution.

The only remaining case is when not all points (cy - d,c, - d) belong to the set S'.
This means that for some such point both values ¢y and cy are odd: ¢y = 2ny +1and
¢y = 2ny + 1 for some integers 1, and n,. Due to Part 9, we have (2ny -d, 2ny - d)es,
so the difference

(2ny+1)-d,(2n, +1)-d) — (2ny-d,2n, -d) = (d,d)

also belongs to the set S'.

Since, due to Part 9, we have (2n, - d, 2ny - d) € § for all ny and ny, we conclude,
by using Part 5, that ((2ny 4+ 1) - d, (2n, 4+ 1) -d) € S'. So, all pairs for which both
coordinates are odd multiples of d are in S’. Thus, we get the new case described in the
Proposition.

11°. The previous results were about the sets containing the point (0,0).
For all other sets S containing some other point (xp, yo), we get the same result if
we take into account that the optimal family is invariant, and thus, with the set S, the
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526 optimal family also contains the set Ty, y, (S) that contains (0,0) and is, thus, equal either
a2z to the family corresponding to dilated convolution or to the new similar family.
328 The proposition is proven.

s20 4. Conclusions and Future Work

a0 Conclusions. One of the efficient machine learning ideas is the idea of a convolutional
;1 neural network. Such networks use convolutional layers, in which the output value at
;2 each point is a combination of input data corresponding to several neighboring points.
333 A reasonable idea is to restrict ourselves to only some of the neighboring points. It
;3¢ turns out that out of all such restrictions, the best results are obtained when we only use
a5 neighboring points for which the differences in both coordinates are divisible by some
336 constant /. Networks implementing such restrictions are known as dilated convolutional
;37 neural networks.

338 In this paper, we provide a theoretical explanation for this empirical conclusion.

330 Future work. This paper describes a general abstract result: that for any optimality
a0 criterion that satisfies some reasonable properties, some dilated convolution is optimal.
saa To be practically useful, it is desirable to analyze which dilated convolutions are optimal
sz for different practical situations and for specific criteria uses in machine learning, such
;a3 as misclassification rate, time of calculation, used memory, etc. (and the combination of
sas  these criteria). It is also desirable to analyze what size neighborhood should we choose
ss  for different practical situations and for different criteria.
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