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Abstract

In many practical situations of fuzzy techniques, we can elicit mem-
bership functions from the experts, but what if we cannot do that? What
functions should we then use? Experiments show that in many applica-
tions, what we call Cauchy membership functions – whose expressions are
similar to Cauchy distributions – work the best. It this paper, we provide
a theoretical explanation for this empirical fact.

1 Formulation of the Problem

In many practical applications of fuzzy techniques (see, e.g., [1, 2, 3, 4, 5, 9]),
we can elicit membership functions from the experts, but what if we cannot do
that? What functions should we then use? Experiments (see, e.g., [7, 8]) show
that in many applications, the following membership functions work the best:

µx(x) =
1

1 +
(x− a)2

k2

. (1.1)

The expression (1.1) describing these membership functions is similar to the
known expression for the probability density function f(x) of a Cauchy distri-
bution (see, e.g., [6]):

f(x) = const · 1

1 +
(x− a)2

k2

. (1.2)

Because of this similarity, membership functions (1.1) are known as Cauchy
membership functions.
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A natural question is: how can we explain this empirical fact – that Cauchy
membership functions work better than other functions that we tried? In this
paper, we provide two explanations:

• first, that these functions (as well as Gaussian membership functions) lead
to the most efficient learning, and

• second, that these functions lead to the most reliable results.

2 Which Membership Functions Lead to the Most
Efficient Learning

2.1 Formulation of the Problem

From expert rules to fuzzy learning. One of the main reasons why Lotfi
Zadeh invented fuzzy techniques was to translate expert rules that use imprecise
(“fuzzy”) natural-language property like “small”, “medium”, etc., into a precise
control strategy. For this purpose, to each such property P , Zadeh proposed to
assign a function µP (x) (known as membership function) that describes, for each
possible value x of the corresponding quantity, the degree to which, according
to the expert, an object with this value satisfies the property P – e.g., to what
extent the amount x is small. This degree is usually assumed to be from the
interval [0, 1].

This is how first applications of fuzzy techniques emerged: researchers elicited
rules and membership functions from the experts, and used fuzzy methodology
to design a control strategy. The resulting control was often reasonably good,
but not perfect. So, a natural idea was proposed: to use the original fuzzy
control as a first approximation, and then to tune its parameters based on the
practical behavior of the resulting system.

This “fuzzy learning” idea was first used in situations when we have expert
rules that provide a reasonable first approximation. However, it turned out that
this learning algorithm leads to a reasonable control even when we do not have
any expert rules, i.e., when we only have data.

Natural question: which membership function should we use? When
we start with expert knowledge, we elicit membership functions from the ex-
perts. But when we use fuzzy learning to situations when there is no expert
knowledge, a natural question is: which membership functions should we use?

2.2 How to Select Membership Functions: Analysis and
Conclusion

Main idea. A natural idea is to select a membership function that would make
learning faster. How can we do that?

Need to compute derivatives. The main objective of any learning is to
optimize the corresponding objective function – a function that describes which
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outputs are better and which are worse. For example, if we have examples of
desired outputs, then the objective is to minimize the discrepancy between the
values produced by the system and the values that we want to obtain.

Since the invention of calculus, the most efficient optimization techniques
are based on computing the derivatives: one of the main objectives (and still
one of main uses) of calculus is to identify points where a function attains its
maximum or minimum as points where its derivative is 0, and the fastest ways
to reach these points is to use the derivatives of the objective function. There
are many optimization techniques, from the simplest gradient descent to more
complex methods, all these techniques use differentiation.

The result of processing by several fuzzy layers is a composition of functions
corresponding to each layer. So, to compute the derivative of the resulting
transformation, we need to know the derivatives corresponding to each layer.
From this viewpoint, since we want to find a membership function that will make
learning faster, we need to find membership functions for which the computation
of its derivatives is as easy as possible.

Let us describe it in precise terms. When we compute the value of the
derivative µ′(x) for some input x, we can use the fact that we have already
computed the output signal and thus, we have already computed the value µ(x).
Thus, in computing the value µ′(x), we can use not only the input x, but also the
value µ(x). In other words, we are looking for an expression µ′(x) = f(µ(x), x)
for the simplest possible function f(a, x) of two variables.

What does “simplest” mean? In a computer, the only hardware sup-
ported operations with numbers are arithmetic operations: addition, subtrac-
tion (which, for the computer, is, in effect, the same as addition), multiplication,
and taking an inverse (division is implemented as a/b = a · (1/b)). To be more
precise, computing an inverse is also implemented as a sequence of additions,
subtractions, and multiplications, so each computation actually consists of ad-
ditions, subtractions, and multiplications – and thus, computes a polynomial,
since a polynomial can be defined as any function that can be obtained from
variables and constants by using addition, subtraction, and multiplication. For
example, when we ask a computer to compute exp(x) or sin(x), what most com-
pilers do is compute the value of a polynomial that approximates the desired
function – usually this polynomial is simply the sum of the first few terms of
this function’s Taylor expansion.

From this viewpoint, looking for the simplest function f(a, x) means looking
for a polynomial f(a, x) that can be obtained by using the smallest possible
number of arithmetic operations. (In a computer, unary minus is easy, so we
do not count unary minuses.)

Additional idea: asymptotic behavior. A typical membership function
corresponding to notions like “small” and “medium” is only satisfied, with a
reasonable degree, for a bounded set of values. Thus, in the limits, when x→∞
or x → −∞, we should have µ(x) → 0. Thus, it makes sense to consider
membership functions with this asymptotic property.

Most membership functions do not just asymptotically tend to 0, they are
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equal to 0 outside some intervals. For such function, in the areas where µ(x) = 0,
we expect µ′(x) = 0, i.e., we have f(0, x) = 0 for all x. Since the function f(a, x)
is a polynomial, this means that all its monomials must be proportional to a,
i.e., we must have f(a, x) = a · g(a, x) for some function g(a, x). Thus, looking
for the simplest function f(a, x) means looking for the simplest functions g(a, x).

We will consider the cases when computing g(a, x) requires 0 or 1 arithmetic
operation.

Case when computing g(a, x) does not require any arithmetic oper-
ations at all. This means that the value g(a, x) is equal to one of the given
values, i.e., either to a or to x or to some constant c.

In the first case, when g(a, x) = a, we have µ′ = f(µ, x) = µ · g(µ, x) =

µ ·µ = µ2, i.e.,
dµ

dx
= µ2 hence

dµ

µ2
= dx. Integrating, we get − 1

µ
= x+C, hence

µ(x) = − 1

x+ C
. This function is unbounded, so it cannot serve as a membership

function. In this case, adding unary minus, i.e., considering g(a, x) = −a, does
not help.

In the second case, when g(a, x) = x, we have µ′ = µ·x, i.e.,
dµ

dx
= µ·x hence

dµ

µ
= x ·dx. Integrating, we get ln(µ(x)) =

x2

2
+C, i.e., µ(x) = A exp

(
x2

2

)
for

some constant A = exp(C). This is not a membership function, but by adding

unary negation, i.e., by considering g(a, x) = −x, we get µ(x) = exp

(
−x

2

2

)
–

a very reasonable case of Gaussian membership functions.

In the third case, when g(a, x) = c, we have µ′ = c · µ, i.e.,
dµ

dx
= c · µ hence

dµ

µ
= c · dx. Integrating, we get ln(µ(x)) = c · x+C, i.e., µ(x) = A exp (c · x) –

also not membership functions.

Case when computing g(a, x) requires a single arithmetic operation.
This operation can be addition/substraction or multiplication. For addition, we
can have g(a, x) = a + a, g(a, x) = a + c, g(a, x) = x + x, g(a, x) = x + c, or
g(a, x) = a+ x. In the first case, we get an unbounded function. In the second
case, we get a sigmoid function – that does not have the right asymptotics for
x → ±∞. In the third and fourth cases, we get Gaussian functions – re-scaled
in the third case and shifted in the fourth case. In the last case, we have a
reasonable differential equation µ′ = µ · (µ + x), but the problem is that this
equation does not have an explicit solution, so while computing µ′(x) is easy
when we know µ(x), computing µ(x) will be difficult – so this case should also
be dismissed.

For multiplication, we can similarly have g(a, x) = a · c, g(a, x) = x · c,
g(a, x) = a · a, g(a, x) = x · x, or g(a, x) = a · x. In the first case, we get an
unbounded function. In the second case, we get a re-scaled Gaussian function.

For g(a, x) = a · a, we have
dµ

dx
= µ3 hence

dµ

µ3
= dx. Integrating, we get
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− 1

2µ2
= x + C, i.e., µ(x) =

√
−2(x+ C). This expression is not defined for

large positive x, so it should also be dismissed.

For g(a, x) = x · x, we get
dµ

dx
= µ · x2 hence

dµ

µ
= x2 · dx. Integrating, we

get ln(µ) =
1

3
· x3 + C, hence µ(x) = exp

(
1

3
· x3 + C

)
. This function is also

not bounded, so it has to be dismissed.

Finally, for g(a, x) = a ·x, we get
dµ

dx
= µ2 ·x hence

dµ

µ2
= x ·dx. Integrating,

we get − 1

µ(x)
=

1

2
·x2+C, hence µ(x) = − 1

1

2
· x2 + C

. This is not a membership

function, but if we add unary minus, i.e., consider g(a, x) = −a · x, we get

µ(x) =
1

1

2
· x2 + C

, i.e., what we called a Cauchy membership function.

Resulting membership functions. A membership function is usually defined
in such a way that its largest value is 1. For the function 1/(x2/2+C), the largest
possible value is 1/C, so we should take C = 1 and consider the membership
function

µ(x) =
1

1 +
x2

2

. (2.1)

We also need to take into account that the numerical value of a physical quantity
depends on the choice of the measuring unit and on the choice of the starting
point. If we change a measuring unit and/or a starting point, then we get new
numerical values X which can be obtained from previous values x by a linear
transformation X = k · x+ a, where k is the ratio of the measuring units and a
is the difference in starting points. A classical example is the relation between
temperature tC in Celsius and temperature tF in Fahrenheit: tF = 1.8 · tC + 32.

When the original values x are described by the membership function (2.1),
then, to get the membership function for the new numerical values X, we need

to substitute, into the formula (2.1), the expression x =
X − a
k

that describes

the old value x in terms of the new value X. As a result, for the new values, we
get the following membership function

µX(X) =
1

1 +
(X − a)2

2k2

. (2.2)

This expression can be somewhat simplified if we define a new parameter K
def
=√

2 · k for which 2k2 = K2, then we get:

µX(X) =
1

1 +
(X − a)2

K2

. (2.3)
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Similarly, substituting x =
X − a
k

into the expression µ(x) = exp

(
−x

2

2

)
,

we get

µX(X) = exp

(
− (X − a)2

2k2

)
, (2.4)

i.e., in terms of the new parameter K:

µX(X) = exp

(
− (X − a)2

K2

)
. (2.5)

Conclusion to this section. The membership functions for which fuzzy learn-
ing is the simplest are Gaussian and Cauchy membership functions (2.3) and
(2.5).

3 Which Membership Functions Lead to the Most
Reliable Results

3.1 Idea

General idea. We want to select membership functions for which we will be
most confident in the results of the corresponding data processing. What often
makes us more confident is when two different techniques lead to the same result
– just like:

• when we have two experts making the same statement, it makes us more
confident that this statement is true, and

• when two different measurements of the same quantity agree, this makes
more confident that both measurement results are correct.

Specific idea. As Zadeh himself mentioned several times, whatever we can
describe by using a membership function µ(x) – which is usually normalized by
taking max

x
µ(x) = 1 – can also, from the mathematical viewpoint, be described

by using subjective probabilities, with the probability density

f(x) =
µ(x)∫
µ(y) dy

.

Vice versa, the probability density distribution can be transformed into a mem-
bership function if we normalize it by dividing by its largest value

µ(x) =
f(x)

max
y

f(y)
.

So, it is reasonable to select a membership function µ(x) for which fuzzy data
processing will lead to the same result as using the corresponding subjective
probabilities.
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3.2 Data Processing: Reminder and the Resulting Expla-
nation

What is data processing.

• Whether we are using the known current values x̃1, . . . , x̃n of different
quantities x1, . . . , xn to predict the future value of some physical quan-
tity y,

• whether we are reconstructing the current value of some difficult-to-measure
quantity y from the results x̃1, . . . , x̃n of measuring related easier-to-measure
quantities x1, . . . , xn,

• whether we are finding the best control y based on the known values
x1, . . . , xn of the related quantities,

in all these cases we have an algorithm f that transforms the known values
x̃1, . . . , x̃n into the desired estimate ỹ = f(x̃1, . . . , x̃n).

Need to take uncertainty into account. The values x̃i come from measure-
ments or from expert estimates. Both measurement and expert estimates are
never absolutely accurate: in general, each measurement result x̃i is different
from the actual (unknown) value xi, i.e., there is a non-zero approximation error

∆xi
def
= x̃i − xi. Because of this, the estimate ỹ is, in general, different from

the value y = f(x1, . . . , xn) that we would have obtained if we used the actual
values xi = x̃i −∆xi. From the practical viewpoint, an important question is:

how big is this difference ∆y
def
= ỹ − y?

In this section, we consider the case when our information about possible
values of ∆xi is characterized in fuzzy terms, by a membership function.

Linearization. In many practical situations, the approximation errors are
relatively small. So, we can expand the expression for ∆y:

∆y = ỹ − y = f(x̃1, . . . , x̃n)− f(x̃1 −∆x1, . . . , x̃n −∆xn)

in Taylor series in terms of ∆xi, and ignore terms which are quadratic (or of
higher order) in terms of ∆xi. In this approximation:

f(x̃1 −∆x1, . . . , x̃n −∆xn) = f(x̃1, . . . , x̃n)−
n∑
i=1

ci ·∆xi,

where we denoted ci
def
=

∂f

∂xi
( x̃1, . . . , x̃n) . In this case, we get

∆y =

n∑
i=1

ci ·∆xi. (3.1)

This is the case we consider in this section.
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How to describe and process fuzzy uncertainty. We assume that for each
estimate x̃i, we have a numerical estimate ∆i of the corresponding approxi-
mation error. This assumption is in good accordance with the usual practice,
according to which we say something like

“xi is approximately 1.0, with an error of about 0.1”;

in this example, the estimate x̃i is equal to 1.0, and ∆i = 0.1.
If we select a membership function µ(x) corresponding to the case ∆i = 1,

then for each i for which ∆i 6= 1, as a membership function for ∆xi, it s
reasonable to take

µi(∆xi) = µ

(
∆xi
∆i

)
(3.2)

To process this fuzzy uncertainty, we can use Zadeh’s extension principle,
according to which the resulting membership function µy(∆y) has the form

µy(∆y) = max

{
min(µ1(∆x1), . . . , µn(∆xn)) :

n∑
i=1

ci ·∆xi = ∆y

}
.

Since we have no information about the membership function µ(x), we have
no reason to conclude that positive or negative values of x are more possible.
Thus, it makes sense to assume that such values are equally possible, i.e., that
µ(x) = µ(−x) for all x. It is known for such even functions µ(x), when all the
membership function have the same shape – i.e., have the form (3.2) – then

the resulting membership function also has the same form µy(∆y) = µ

(
∆y

∆

)
,

where we denoted

∆ =

n∑
i=1

|ci| ·∆i. (3.3)

How to process the corresponding subjective probabilities. Based on
each membership function (3.2), we form the corresponding probability density
functions

fi(∆xi) = const · µi(∆xi) = const · µ
(

∆xi
∆i

)
.

One can easily check that if by ξ we denote a random variable corresponding
to ∆i = 1, with probability density f(x), then the distribution of the random
variable ξi corresponding to ∆i 6= 1 is equivalent to the distribution of ∆i · ξ.
We therefore write that ξi = ∆i · ξ(i), where ξ(i) is distributed according to the
distribution f(x) (corresponding to ∆i = 1).

Since we have no reason to expect positive or negative correlation between
these random variables, it makes sense to assume that they are independent.
Thus, due to the formula (3.1), the random variable ξy corresponding to ∆y has
the form

ξy =

n∑
i=1

ci ·∆i · ξ(i). (3.4)
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So, the condition that the resulting probability density will lead, after renor-

malization, to the membership function µy(∆y) = µ

(
∆y

∆

)
, with the value ∆

described by the formula (3.3), is equivalent to requiring that:

• for n independent identically distributed random variables ξ(i), with com-
mon probability density f(x),

• the distribution of their linear combination (3.4) is equivalent to the dis-
tribution of ∆ · ξ, where ∆ is determined by the formula (3.3).

This condition can be described in terms of the characteristic functions
χα(ω)

def
= E[exp(i · ω · α)], were E[·] denotes the mean value and i

def
=
√
−1.

Indeed, from (3.4), we conclude that for

E[exp(i · ω · ξy)] = E[exp(i · ω ·∆ · ξ)] = χ0(∆ · ω), (3.5)

where χ0 denotes the characteristic function of the random variable ξ, we have

E[exp(i · ω · ξy)] = E

[
exp

(
i · ω ·

n∑
i=1

ci ·∆i · ξ(i)

)]
=

E

[
n∏
i=1

exp
(

i · ω · ci ·∆i · ξ(i)
)]

.

Since the variables ξ(i) are independent, the expected value of the product is
equal to the product of expected values, i.e.,

E[exp(i · ω · ξy)] =

n∏
i=1

E
[
exp

(
i · ω · ci ·∆i · ξ(i)

)]
=

n∏
i=1

χ0(ci ·∆i · ω). (3.6)

Comparing the expression (3.5) and (3.6), we conclude that

χ0

((∑
i=1

|ci| ·∆i

)
· ω

)
=

n∏
i=1

χ0(ci ·∆i · ω). (3.7)

For any a > 0, for ω = 1, ∆1 = a, and c1 = −1, we get χ0(a) = χ0(−a), so the
function χ0(a) is even.

For any a > 0 and b > 0, for n = 2, ω = 1, ∆1 = a, and ∆2 = b, we conclude
that

χ0(a+ b) = χ0(a) · χ0(b). (3.8)

Taking logarithms of both sides, we get Cauchy’s functional equation `(a +

b) = `(a) + `(b), where we denoted `(a)
def
= ln(χ0(a)). The function `(a) is

measurable, and it is known that the only measurable solutions of Cauchy’s
functional equation are linear functions, so `(a) = k · a for some constant k,
and thus, χ0(a) = exp(k · a) Since the function χ0(a) is even, we have χ0(a) =
exp(k · |a|).
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The characteristic function is a Fourier transform of the probability density
function. So, by applying the inverse Fourier transform to the characteristic
function, we can reconstruct the probability density function. For the above

expression, we get f(x) =
const

1 +
x2

k2

. So, after normalizing it back to the mem-

bership function, we get

µ(x) =
1

1 +
x2

k2

, (3.9)

which is exactly what we called Cauchy membership function.

From the membership function for the approximation error to the
membership function for the actual quantity. According to the formula
(3.9), the membership function for each approximation error ∆x should have
the form

µ∆x(∆x) =
1

1 +
(∆x)2

k2

. (3.10)

Substituting the expression ∆x = x̃ − x into the formula (3.10), we get the
membership function corresponding to each quantity x:

µx(x) =
1

1 +
(x− a)2

k2

, (3.11)

for a constant a
def
= x̃.

Conclusion to this section. For each membership function, we can process
the corresponding uncertainty in two different ways. First, we can apply Zadeh’s
extension principle. Alternatively, we can:

• transform the corresponding membership functions into probability den-
sity functions,

• process the corresponding random variable, and then

• transform the probability density function for the result back into a mem-
bership function.

The only case when these two results coincide – and thus, when we have ad-
ditional confidence in this joint result – is when we use Cauchy membership
functions (3.11).
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