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Abstract. Neural networks – specifically, deep neural networks – are, at present, the most effective machine learning techniques.
There are reasonable explanations of why deep neural networks work better than traditional “shallow” ones, but the question
remains: why neural networks in the first place? why not networks consisting of non-linear functions from some other family of
functions? In this paper, we provide a possible theoretical answer to this question: namely, we show that of all families with the
smallest possible number of parameters, families corresponding to neurons are indeed optimal – for all optimality criteria that
satisfy some reasonable requirements.
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1. Formulation of the problem

A natural question. At present, the most successful
machine learning tool is deep neural networks – a spe-
cific case of neural networks; see, e.g., [2]. This em-
pirical success leads to a natural question: why are
deep neural networks so successful? There are some
theoretical explanations of why deep neural networks
are more successful than traditional neural networks;
see, e.g., [2,3,4]. There are some explanations of why
neural networks are usually more effective than some
other technique, e.g., than support vector machines [1].

However, a general question remains: why neural
networks in general are so effective in the first place?
This question is not only about computer applications:
artificial neural networks started by simulating biolog-
ical neurons – that are largely performing similar data
processing. Biological neurons are a product of bil-
lions of years of improving evolution, so the fact that
this type of data processing is used in biological neu-
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rons is a good indication that such data processing is
effective – but why?

Let us formulate this question in more precise
terms. A neural networks is composed of neurons,
each of which transforms the inputs x1, . . . , xn into an
output value

y = s(w1 · x1 + . . .+ wn · xn + w0) (1)

for some coefficients wi. In other words:

– first, we form a linear combination

x
def
= w1 · x1 + . . .+ wn · xn + w0 (2)

of the inputs, and
– then, we apply a non-linear function s(x) of one

variable – known as the activation function – to
this linear combination x.

In these terms, the above question is: why is the family
(1) of non-linear functions more effective than other
possible families of non-linear functions?
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Let us simplify this question. In order to answer this
question, let us perform the following two simplifica-
tions.

First, let us notice that in the linear expression (2),
the last term w0 is different from all the other terms.
To make this formula more uniform, let us follow the
usual arrangement and introduce an auxiliary variable
x0 = 1. Then, the formula (1) takes the form

s(w0 · x0 + . . .+ wn · xn). (3)

Second, let us take into account that in many cases,
the output signal y represents the value of some phys-
ical quantity. This happens, e.g., at the last layer of
the neural network, when we generate the computa-
tions result – and in prediction problem, this result is
about the future value of the quantity of interest (e.g.,
the next day’s temperature). The numerical value of a
quantity depends on the choice of a measuring unit.
If we select a new measuring unit which is C times
smaller than the original one, then all numerical values
will multiply by C: e.g., if we replace meters by cen-
timeters, all values are multiplied by 100. In the new
units, the output of the neuron takes the form

C · s(w0 · x0 + . . .+ wn · xn). (4)

From this viewpoint, instead of considering a family of
all the functions (3) corresponding to different values
wi, it makes sense to consider a more general family
(4) corresponding to all possible values of C and wi.

What we do in this paper. In this paper, we explain
why the family (4) is better than other possible families
of nonlinear functions that have the same (or smaller)
number of parameters. This provides a possible theo-
retical explanation of why neural networks – in partic-
ular, deep neural networks – are so effective.

2. Analysis of the problem

Natural robustness requirement on transformation
functions. Inputs to data processing comes from mea-
surements, and measurements are never absolutely ac-
curate, there is, in general, a non-zero different be-
tween the measurement result x̃i and the actual (un-
known) value xi of the measured quantity. This dif-
ferent is known as the measurement error. This differ-
ence affects the result of data processing. We want to
make sure that the corresponding effect is not ampli-

fied too much: we want to make sure that the differ-
ence in the results is proportional to the measurement
errors, i.e., that for the corresponding transformation
y = f(x1, . . . , xn) satisfies the following inequality:

|f(x̃0, . . . , x̃n)− f(x1, . . . , xn)| ≤

L · (|x̃0 − x0|+ . . .+ |x̃n − xn|). (5)

for some coefficient L. Such functions are known as
Lipschitz continuous.

It is known that Lipschitz functions are almost ev-
erywhere differentiable, and many of their properties
are similar to properties of smooth (everywhere differ-
entiable) functions.

What do we mean by a family of functions. We are
interested in functions of n + 1 variable x0, . . . , xn.
The expression (4) describes a family of such functions
that depends, in addition to the multiplicative factor C,
on n+ 1 parameters w0, . . . , wn, to the total of n+ 2.
Since we are interested in families with the same (or
smaller) number of parameters, we need to consider
families that also depend on no more than n + 2 pa-
rameters.

We also want to make sure that a family is uniquely
determined by its functions, so if we simply change the
parameters without changing the class of functions, we
will end up with the same family.

Definition 1. Let n and p be positive integers.

– We say that two Lipschitz continuous mapping
f(x0, . . . , xn, c0, . . . , cp) and

g(x0, . . . , xn, c0, . . . , cp)

are equivalent if the following two conditions are
satisfied

∗ for each C and for each tuple c = (c0, . . . , cp),
there exists a value C ′ and a tuple c′ =
(c′0, . . . , c

′
p) for which, for all xi, we have:

C · f(x0, . . . , xn, c0, . . . , cp) =

C ′ · g(x0, . . . , xn, c′0, . . . , c′p);
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∗ for each C and for each tuple c = (c0, . . . , cp),
there exists a value C ′ and a tuple c′ =
(c′0, . . . , c

′
p) for which, for all xi, we have:

C · g(x0, . . . , xn, c0, . . . , cp) =

C ′ · f(x0, . . . , xn, c′0, . . . , c′p).

– By a family, we mean an equivalence class of
functions – in terms of the above equivalence.

– We say that a function t(x1, . . . , xn) belongs to
the family F – as defined by its element

f(x0, . . . , xn, c0, . . . , cp)

if there exist values C, c0, . . . , cp for which, for
all xi, we have

t(x0, . . . , xn) = C · f(x0, . . . , xn, c0, . . . , cp).

What do we mean by “better”? We want to analyze
why families corresponding to neural data processing
perform better than other possible nonlinear families.
Usually, “better” means that:

– we have some numerical criterion – e.g., mean
square approximation error after a certain fixed
computation time, and

– “better” means a smaller value of this numerical
criterion.

However, we can have more complex cases: e.g., if we
have several families with the same mean square ap-
proximation error, we can select, among them, the one
with the smallest probability of approximation errors
exceeding some given threshold. If this still leaves us
with several possible families, we can minimize some-
thing else, etc.

So, to describe what is better in the most general
way, let us go beyond simple numerical criteria and
simply require that we have two relations on the set of
all families:

– a relation F < G meaning that a family F is bet-
ter than the family G; and

– a relation F ∼ G meaning that a family F has the
same quality as the family G – with respect to the
given criterion.

It is reasonable to require that these two relations sat-
isfy transitivity: if F is better than G, and G is better
than H, then F should be better than H. Thus, we ar-
rive at the following definition (see, e.g., [5]):

Definition 2. By an optimality criterion, we mean a
pair of relations (<,∼) on the set of all possible fami-
lies for which the following properties are satisfied for
all F , G, andH:

– if F < G and F < H, then F < H;
– if F < G and F ∼ H, then F < H;
– if F ∼ G and F < H, then F < H;
– if F ∼ G and F ∼ H, then F ∼ H;
– if F ∼ G, then G ∼ F;
– if F < G, then we cannot have F ∼ G.

In mathematical terms, this pair is known as pre-
order. The difference from order is that we can have
F ∼ G for F 6= G.

We have mentioned that if there are several families
which are optimal with respect to a given criterion, this
means that we can optimize something else – i.e., in
effect, that the original criterion was not final. Thus,
we arrive at the following definition.

Definition 3.

– We say that a family Fopt is optimal with respect
to the optimality criterion (<,∼) if for every fam-
ily F , we have Fopt < F or Fopt ∼ F .

– We say that the optimality criterion (<,∼) is final
if there is exactly one family which is optimal with
respect to this criterion.

Invariance. In many practical situations, it makes
sense to consider not only the original values xi, but
also their linear combinations

x′i =

n∑
j=0

aij · xj , (6)

where aij is a reversible matrix. For example, if xi
are coordinates, we can use a different coordinate sys-
tem. We can also use different units for different in-
puts, which also – as we mentioned earlier – amounts
of linear transformations xi → C1 · xi.

Such a transformation does not change the problem,
so it makes sense to require that the result of compar-
ing two families should not change if we simply ap-
ply such a transformation. For example, it would be
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strange if one program worked better if all the data are
in meters, but another one is better if all inputs are in
inches. Thus, we arrive at the following definition.

Definition 4.

– By an affine transformation A, we mean a re-
versible transformation of type (6).

– For each family F described by a function

f(x0, . . . , xn, c0, . . . , cp)

and for each affine transformation A, by the re-
sult A(F) of applying this transformation to the
family, we mean a family generated by the func-
tion

Tf(x0, . . . , xn, c0, . . . , cp)
def
=

f

 n∑
j=0

a0j · xj , . . . ,
n∑

j=0

anj · xj , c0, . . . , cp

 .

– We say that the optimality criterion (<,∼) is
affine-invariant if for every affine transformation
A and for every two families F and G, the follow-
ing two conditions hold:

∗ if F < G, then A(F) < A(G);
∗ if F ∼ G, then A(F) ∼ A(G).

Now, we are ready to formulate our main result.

3. Main result

Proposition.

– The smallest p for which there exists an affine-
invariant final optimality criterion on the set of
all families is p = n.

– For p = n, for every affine-invariant final opti-
mality criterion on the set of all families, the opti-
mal family is of type (4) for some functions s(x).

In other words, neurons are indeed optimal non-
linear transformation functions – optimal with respect
to any optimality criterions that satisfies reasonable
properties of being final and affine-invariant.

Proof. Let (<,∼) be a final affine-invariant optimality
criterion, and let Fopt denote the family which is opti-
mal with respect to this criterion. Let us prove that this
function has the neural form (4).

1◦. Let us first prove that the family Fopt is itself
affine-invariant, i.e., that for each affine transformation
A, we have A(Fopt) = Fopt.

Indeed, the fact that the family Fopt is optimal
means that for every family F , we have either Fopt <
F or Fopt ∼ F . In particular, for every family F ,
one of these two conditions is satisfied for the family
A−1(F), where A−1 denote the inverse affine trans-
formation. In other words, we have either Fopt <
A−1(F) or Fopt ∼ A−1(F).

Due to affine-invariance, taking into account that
A(A−1(F)) = F , we conclude that A(Fopt) < F
or A(Fopt) ∼ F . This is true for each family F .
By definition of optimality, this means that the family
A(Fopt) is optimal. But we know that Fopt is optimal,
and we assumed that our optimality criterion is final
– which means that there is only one optimal family.
Thus, we indeed have A(Fopt) = Fopt.

2◦. The property 1◦ means that for each function
t(x1, . . . , xn) from the optimal family and for each
affine transformation, the transformed function also
belongs to the same optimal family.

The functions f forming the family F are Lips-
chitz and thus, almost everywhere differentiable. Let
us pick one such function t(x0, . . . , xn) and a point
(X0, . . . , Xn) where its value is non-zero and its gra-
dient is defined and is non-zero.

We can always perform an affine transformation of
coordinates so that in the new coordinates the gradi-
ent vector will be parallel to the 0-th axis – e.g., we
can rotate the axes so that one of the axes becomes
parallel to the gradient vector. In the new coordinates
z0, . . . , zn, for the correspondingly transformed func-
tion T (z0, . . . , zn), we have

∇T =

(
∂T

∂z0
,
∂T

∂z1
, . . . ,

∂T

∂zn

)
= (1, 0, . . . , 0)

at the selected point – which in the new coordinates,
has the form (Z0, . . . , Zn).

By multiplying this function T ∈ Fopt by an appro-
priate constant C, we can get, for each possible value
T0 6= 0, a new function from the family F for which
C · T (Z0, . . . , Zn) = T0 and for which the gradient is
still parallel to the 0-th axis. Similarly, for any given



Jonatan Contreras et al. / Why neural networks in the first place 5

non-zero vector v = (v0, . . . , vn), by rotating the co-
ordinates zi (and, if needed, by re-scaling all of them),
we can get a new function from the family Fopt for
which the gradient at the point (Z0, . . . , Zn) is equal
to v. Thus, for each tuple (T0, v0, . . . , vn), we have a
function from the family Fopt for which:

– the value at the point (Z0, . . . , Zn) is equal to T0
and

– the gradient at this point is equal to (v0, . . . , vn).

Thus, if we assign, to each tuple (T0, v0, . . . , vn),
one of the corresponding functions from the family
Fopt, we will get a (n+ 2)-parametric family of func-
tions. Thus, the total number p+ 2 of parameters (one
parameter C and p+1 parameters c0, ]dots, cp) cannot
be smaller than n+2, thus p ≥ n. This proves the first
statement of our proposition. To be more precise, we
also need to prove that such a criterion exists, but this
is easy – e.g., a criterion according to which the neural
family (4) is better than every other family – while all
other families are equivalent to each other – is clearly
final and affine-invariant.

Let us prove the second statement. For this, let us
consider the case when p = n. In this case, the whole
family Fopt depends only on n + 2 parameters. Thus,
if we had, for each tuple, a whole at-least-1-parametric
family of functions corresponding to this tuple, we
would have a family determined by more than n+2 pa-
rameters – which would contradict to our assumption
that p = n.

In particular, this means that the functions

T (z0, α · z1, z2, . . . , zn)

which also belong to the family Fopt and for which
the tuple (T0, v0, . . . , vn) is the same cannot form a 1-
parametric family: which means that they should all be
identical, i.e., that

T (z0, α · z1, z2, . . . , zn) = T (z0, α
′ · z1, z2, . . . , zn)
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