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Abstract

Multi-view techniques help us reconstruct a 3-D object and its prop-
erties from its 2-D (or even 1-D) projections. It turns out that similar
techniques can be used in processing uncertainty – where many problems
can reduced to a similar task of reconstructing properties of a multi-D
object from its 1-D projections. In this chapter, we provide an overview
of these techniques.

1 Introduction

What are multi-view techniques: a brief reminder. Our world is 3-
dimensional. However, in most practical situations, we only see 2-D projections
of the real-world objects, and we need to reconstruct the properties of the 3-D
object based on these multi-view 2-D projections.

Because of the ubiquity of this problem, many advanced and efficient multi-
view techniques have been developed.

It is advantageous to apply ideas behind multi-view techniques in
other problems as well. Because this area is well advanced, it can be advan-
tageous to use its techniques to solve other problems – problems which are less
ubiquitous, more recent, and which are, therefore, somewhat behind multi-view
research areas – at least in terms of the existence of efficient techniques.

What we do in this chapter. In this chapter, we show that multi-view
techniques can be used in uncertainty quantification (UQ) – which, by the way,
is important to multi-view analysis as well.

What is uncertainty quantification and what it is important. The main
need for uncertainty quantification comes from the fact that, in general, data
for processing come from measurements, and measurements are never absolutely
accurate, there is always measurement error – the difference between the mea-
surement result and the actual (unknown) value of the corresponding quantity;
see, e.g., [21].
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Because of this, the value that we obtain by processing measurement results
is, in general, different from what we would have got if we processed the actual
values of the corresponding quantities. In many practical situations, it is very
important to know how big the resulting inaccuracy can be. For example, if
we are prospecting for oil, and we found out that a certain field contains 150
million tons of oil, then our actions depend on the accuracy of this estimate.

• If it is 150 plus minus 20, we should start exploiting this field right away.

• However, if it is 150 plus minus 200, maybe there is no oil at all, so we
should perform more measurements before investing a lot of money in
production.

Challenges of uncertainty quantification. The usual techniques for uncer-
tainty quantification are based on the idea of sensitivity analysis: since we do
not know the values of the measurement errors, we simulate different possible
combinations of such errors and analyze how it affects the result of data pro-
cessing. The question is what is the best way to simulate these errors and what
is the best way to process the results of this simulation.

How multi-view techniques can help. It turns out that, under reasonable
assumptions, the sensitivity of the data processing algorithm can be described
by a multi-D vector. In this description, simulation results are 1-D projections
of this vector, so the UQ problem means analyzing the property of the multi-
D vector based on its 1-D projections. This problem is similar to the usual
multi-view analysis:

• on the one hand, the uncertainty-related problem is somewhat easier that
the usual multi-view analysis, since we have 1-D (and not 2-D) projec-
tions, and since, as we will show, the object whose properties we want to
reconstruct from these projections is just a vector;

• on the other hand, the uncertainty-related problem is somewhat more
complex that the usual multi-view analysis, since the object of interest is
now multi-D (and not just 3-D).

We show that multi-view reformulation of UQ problems can be useful for solving
these problems.

2 Need for Uncertainty Quantification

What do we want. What do we the humanity want? In a nutshell:

• we want to predict what will happen in the future – this is one of the main
objectives of science, and

• we want to know what we can do to make the future better – which actions
to perform, which actions to avoid, what gadgets to use and how; this is
one of the main objectives of engineering.
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Of course, these tasks go beyond the narrowly understood engineering. For
example:

• When we go to a doctor because of a cough, we want to know when this
cough will stop, and what we need to do to stop it faster.

• When we teach students, we want to know whether they will learn the
required material, and if the prediction is that many of them will fail
the class – how to change out teaching strategy to make sure that more
students succeed.

Need for data processing. The state of the world, the states of all its ob-
jects, the actions and gadgets – all this is usually described by numbers, by the
numerical values of the corresponding quantities:

• numerical values x1, . . . , xn describe the current state of the world,

• numerical values y, . . . , describe the future state of the world and the
necessary actions.

In these terms, our objective is to determine all the desired values y based on
the available data x1, . . . , xn. Once the algorithm y = f(x1, . . . , xn) for this
determination is found, the computations become straightforward:

• we plug in the known values xi into this algorithm, and

• we get the value y = f(x1, . . . , xn) of the desired quantity.

This is called data processing. This is what computers were designed to do in
the first place, this is what computers still do a lot.

Need for uncertainty quantification. The above description – in which
we assumed that we know the exact values of the quantities x1, . . . , xn – was
somewhat oversimplified. Yes, we have information about these values, but this
information comes:

• either from measurements,

• or from expert estimates.

Neither of these two procedures produces exact values: there is always a differ-

ence ∆xi
def
= x̃i−xi between the estimate x̃i and the actual (unknown) value xi

of the corresponding quantity.
Because of this difference, even in the ideal case, when the algorithm f =

f(x1, . . . , xn) reflects the exact relation between the quantities xi and y, the
value ỹ = f(x̃1, . . . , x̃n) that we obtained by processing the estimates x̃i is, in
general, different from the value y = f(x1, . . . , xn) that we would have obtained
if we had access to the exact value xi.

In most practical situations, it is important to understand how big can be the
corresponding difference ∆y = ỹ−y. For example, if we program the trajectory
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of a self-driving car in a tunnel, and we conclude that in the next second, it will
be at a distance ỹ = 1 m from the wall, then the car’s reaction should depend
on the accuracy of this estimate:

• if this is 1 m ± 0.5 m, we are safe;

• however, if this is 1 m ± 2 m, then we need to do something, since other-
wise, the car may get too close to the wall and crash.

Finding out what values ∆y are possible is known as uncertainty quantification
(UQ). Informally, uncertainty quantification solves the following task:

• given: an algorithm y = f(x1, . . . , xn), the measurement results x̃i, and
some information about the uncertainties ∆xi = x̃i − xi,

• find out what are the possible values of the difference

∆y = f(x̃1, . . . , x̃n)− f(x1, . . . , xn).

3 What Makes Uncertainty Quantification Eas-
ier and What Makes It More Complex

Linearization. The uncertainty quantification problem is made easier by the
fact that the estimation errors are usually small. Therefore, taking into account
that xi = x̃i −∆xi, we can expand the dependence

∆y = f(x̃1, . . . , x̃n)−f(x1, . . . , xn) = f(x̃1, . . . , x̃n)−f(x̃1−∆x1, . . . , x̃n−∆xn)

in Taylor series in ∆xi and ignore terms which are quadratic (or higher order)
in ∆xi. As a result, we get the following formula

∆y =

n∑
i=1

ci ·∆xi, (1)

where we denoted

ci
def
=

∂f

∂xi
(x̃1, . . . , x̃n). (2)

The fact that we can consider linear dependence on ∆xi makes the corresponding
computations easier; see, e.g., [2, 12, 21, 23].

Additional complexity. In many simple examples, we know all the steps of
the algorithm, and we can use this knowledge when solving the corresponding
uncertainty quantification problems. This happens when someone wrote the
corresponding program “from scratch”, then the lines of this program provide
a clear idea of what exactly is being done.

However, for complex tasks, it is not possible for one person to write the
whole code from scratch. When people write the code for solving such prob-
lems, they try to use off-the-shelf packages as much as possible. Many of these
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packages are proprietary, and it makes sense: to design a huge-size software, it
is necessary to employ many programmers, they all need to be paid – and if
everything is open access, no one will pay. This makes sense from the economic
viewpoint, but from the viewpoint of uncertainty quantification, it makes life
more complicated – since now the algorithm f(x1, . . . , xn) is largely a “black
box” in the following sense:

• we can plug in different values xi and get the result of applying the algo-
rithm f , but

• we do not know what exactly steps this algorithm went through to produce
these results.

4 How Uncertainty Quantification Is Related to
Multi-View Techniques

Traditional case of uncertainty quantification. In the traditional approach
to uncertainty quantification (see, e.g., [21, 22]), we assume:

• that all estimation errors ∆xi are independent, and

• that each estimation error is normally distributed with 0 mean and known
standard deviation σi.

In this case, the expression ∆y – as described by the formula (1) – is also
normally distributed, since it is known that a linear combination of several in-
dependent normally distributed random variables is also normally distributed;
see, e.g., [22]. The mean of this linear combination is equal to the linear com-
bination of the means, i.e., to 0, and the variance σ2 of the linear combination
(1) is determined by the formula

σ2 =

n∑
i=1

c2i · σ2
i . (3)

It is known that a normal distribution is uniquely determined by its mean and
its standard deviation σ (or, equivalently, its variance σ2). Thus, in this case,
the uncertainty quantification problem is reduced to the problem of computing
the expression (3).

What we can do to estimate the desired variance. Since the data pro-
cessing algorithm y = f(x1, . . . , xn) is given as a black box, its expression is not
known, we cannot differentiate the corresponding function and find the actual
values ci. What we can do, once we have computed the result ỹ = f(x̃1, . . . , x̃n)
of data processing, is to try different tuples (∆x1, . . . ,∆xn); for each such tuple:

• first, we plug in the values xi = x̃i−∆xi into the algorithm f(x1, . . . , xn),
resulting in the value y = f(x̃1 −∆x1, . . . , x̃n −∆xn), and
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• then, we compute the difference ∆y = ỹ − y (and we know that this

difference is equal to
n∑
i=1

ci ·∆xi).

A typical way to select the values ∆xi is to use Monte-Carlo simulations, i.e.,
to select the values ∆xi which are normally distributed with zero mean and
standard deviation σi. Usually, programming languages and simulation pack-
ages has methods for simulating the “standard” normal distribution, with 0
mean and standard deviation 1. The resulting desired random variable can be
obtained from the result ξi of the standard normal random number generator if
we multiply this result by σi.

From this viewpoint, instead of directly generating the values ∆xi, it makes
sense to:

• first generate the values ξi, and

• then take ∆xi = σi · ξi.

In terms of ξi, the procedure of generating the corresponding value ∆y takes
the following form:

• first generate the values ξi;

• then, we plug in the values xi = x̃i−σi ·ξi into the algorithm f(x1, . . . , xn),
resulting in the value y = f(x̃1 − σ1 · ξ1, . . . , x̃n − σn · ξn), and

• finally, we compute the difference ∆y = ỹ− y (which we know to be equal

to
n∑
i=1

ci · σi · ξi).

In terms of the auxiliary quantities ξi, the expression (1) takes the form

∆y =

n∑
i=1

ci · σi · ξi. (4)

This expression can be simplified if we denote ai
def
= ci · σi, then the expression

(4) takes the form

∆y =

n∑
i=1

ai · ξi. (5)

Interestingly, in terms of ai, the desired expression (3) also gets a simplified
form:

σ2 =

n∑
i=1

a2i . (6)

Now, we are ready to describe the relation to multi-view techniques.

Geometric formulation of the problem and its relation to multi-view
techniques. In geometric terms:
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• the values ai form a vector ~a = (a1, . . . , an), and

• the values ξi form a vector ~ξ = (ξ1, . . . , ξn).

In terms of these vectors:

• the value ∆y – as described by the expression (5) – is simply a scalar (dot)

product ~a · ~ξ of these two vectors, and

• the value σ2 – as describes by the formula (3) – is simply the square ‖~a‖2

of the length ‖~a‖ =

√
n∑
i=1

a2i of the vector ~a.

So, the standard deviation σ =
√
σ2 is simply equal to the length ‖~a‖ of the

vector ~a.
Thus, in these geometric terms, the newly reformulated problem takes the

following:

• there is a vector ~a = (a1, . . . , an) that we do not know;

• we want to find the length ‖~a‖ of this vector;

• for this purpose, for different vectors ~ξ, we can compute the scalar prod-
uct ~a · ~ξ.

Knowing the scalar product is equivalent to knowing the projection

π~ξ(~a) =
~a · ξ
‖ξ‖

of the unknown vector ~a on the 1-D space generated by the vector ~ξ.
Thus, the problem takes the following form:

• we want to estimate some characteristic of the unknown multi-D object ~a

• by studying its projection on different 1-D spaces.

In this form, this is clearly a particular cases of the general multi-view recon-
struction problem. The main difference from the usual cases of the multi-view
problem is that:

• usually, we reconstruct a 3-D object from its 2-D projections;

• now, we reconstruct a multi-D object from its 1-D projections.

Comment. We explained the relation between uncertainty quantification and
multi-view techniques on the example of the traditional approach to uncertainty
quantification; however, as we will see in this paper, the same relation can be
traced for all other types of uncertainty.

7



5 Straightforward (“Naive”) Approach and Its
Limitations

Straightforward approach: main idea. In terms of the multi-view reformu-
lation of our problem, our goal is to find the length of the vector ~a. According
to the formula for the length, a straightforward way to compute this length is:

• to find all the components a1, . . . , an of this vector, and

• then, to compute ‖~a‖ as

√
n∑
i=1

a2i .

A straightforward way to compute each component ai is to take into account
that this component is simply a scalar product of the vector ~a and the vector
~e (i) = (0, . . . , 0, 1, 0, . . . , 0) that has all components equal to 0 with the exception

of the i-th component e
(i)
i which is equal to 1: ai = ~a · ~e (i).

Thus, we arrive at the following straightforward algorithm for computing
the desired length ‖~a‖ – and thus, for solving the corresponding uncertainty
quantification problem.

Resulting algorithm.

• for i = 1, . . . , n, we take ~ξ = ~e (i) and compute the corresponding value
∆y; we will denote the resulting value of ∆y by ai;

• then, we compute the desired length as ‖~a‖ =

√
n∑
i=1

a2i .

Resulting algorithm: a detailed description. If we explicitly describe how
∆y is computed, we arrive at the following detailed description of the above
algorithm:

• for each i from 1 to n, we prepare the values ξ
(i)
1 , . . . , ξ

(i)
n for which ξ

(i)
i = 1

and ξ
(i)
j = 0 for all j 6= i;

• then, we apply the algorithm f to the values

x1 = x̃1 − σ1 · ξ(i)1 , . . . , xn = x̃n − σn · ξ(i)n ,

thus computing the value y(i) = f(x̃1, . . . , x̃i−1, x̃i− σi, x̃i+1, . . . , x̃n), and
compute ai = ỹ − y(i);

• finally, we compute σ =

√
n∑
i=1

a2i .

Limitations of the straightforward approach. The above straightforward
algorithm requires n computations of the corresponding quantity ∆y. As we
have mentioned earlier, each of these computations means applying the algo-
rithm f(x1, . . . , xn) to appropriate values xi. Thus:
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• in addition to the original call to the algorithm f – to compute the original
result ỹ = f(x̃1, . . . , x̃n),

• we need to call this algorithm n more times.

We have also mentioned that:

• in many practical situations, this algorithm is complicated, each call may
require hours on a high performance computer, and

• the number of inputs n may be huge – for problems like weather predic-
tions, we process thousands of inputs.

Thus, using the straightforward approach would mean spending thousands times
more computation time that the actual computation – months instead of hours.
This is clearly not realistic. That is why the above straightforward approach is
sometimes called “naive” approach.

6 Monte-Carlo Approach: Traditional Proba-
bilistic Case

Main idea: reminder. If the values ξi are independent normally distributed
random variables with 0 means and standard deviation (1), then their linear

combination ~a · ~ξ =
n∑
i=1

ai · ξi is also normally distributed, with 0 mean and

standard deviation σ =

√
n∑
i=1

a2i .

So, if we simply simulate all these ξi, then the resulting value ∆y = ~a · ~ξ
will be normally distributed with mean 0 and standard deviation equation to
the desired value ‖~a‖. If we repeat this simulation several (N) times, we get a
sample of values ∆y(k), based on which we can compute the sample standard
deviation √√√√ 1

N
·
N∑
k=1

(
∆y(k)

)2
.

It is known (see, e.g., [22]), that the accuracy with which the sample standard
deviation approximates the actual one is proportional to 1/

√
N . So, e.g., if we

want to compute the desired value σ with the relative accuracy of 20%, it is
sufficient to run just N = 25 simulations – since in this case, 1/

√
N = 20%. This

is clearly much faster than thousands of calls to f needed for the straightforward
approach.

By the way, 20% relative accuracy in determining the uncertainty is very
good – it means, e.g., distinguishing between 10% and 12% accuracy. Usually,
an even lower accuracy is sufficient: we say that the accuracy is ±10% or ±15%,
but rarely ±12%.
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Let us describe the above idea in precise terms.

Resulting algorithm. For each k = 1, . . . , N (where N is determined by the
desired relative accuracy), we do the following:

• first, for each i from 1 to n, we use the random number generator (generat-

ing standard normal distribution), and get the corresponding values ξ
(k)
i ;

• then, we use the resulting vector ~ξ (k) to compute the corresponding
value ∆y(k).

Once we have all these values, we compute ‖~a‖ =

√√√√ 1

N
·
N∑
k=1

(
∆y(k)

)2
.

Let us describe this idea in detail.

7 Algorithm for the Probabilistic Case

What is given. We are given:

• the values x̃1, . . . , x̃n;

• the standard deviations σ1, . . . , σn; and

• an algorithm f(x1, . . . , xn) given as a black box.

We also know the value ỹ = f(x̃1, . . . , x̃n).

What we want. Our goal is to compute the standard deviation σ of the
difference ∆y = ỹ − f(x̃1 − ∆x1, . . . , x̃n − ∆xn), where ∆xi are independent
random variables with 0 mean and standard deviation σi.

Algorithm. First, we select the number of iterations N based on the desired
relative accuracy ε > 0: we want 1/

√
N ≈ ε, so we take N ≈ ε−2.

Then, for each k = 1, . . . , N , we do the following:

• first, for each i from 1 to n, we use the random number generator (generat-

ing standard normal distribution), and get the corresponding values ξ
(k)
i ;

• then, we plug in the values xi = x̃i − σi · ξ(k)i into the algorithm f , thus
computing the difference

∆y(k) = ỹ − f
(
x̃1 − σ1 · ξ(k)1 , . . . , x̃n − σn · ξ(k)n

)
;

• once we have all these values, we compute σ =

√√√√ 1

N
·
N∑
k=1

(
∆y(k)

)2
.
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8 Need to Go Beyond the Traditional Proba-
bilistic Case

Traditional probabilistic case: reminder. The above algorithms are in-
tended for the case when:

• we know the probability distributions of all the approximation errors ∆xi,

• all these distributions are normal, with 0 mean and know standard devi-
ation σi; and

• all approximation errors are independent.

This case does frequently occur in practice. In practice, there are indeed
many situations where all these three conditions are satisfied.

Indeed, factors affecting the inaccuracy of different measurements – such as
noise at the location of different sensors – are indeed reasonably independent.

Also, if we know the probability distributions, then the requirement that the
mean is 0 makes sense:

• if the mean is not 0, i.e., in probabilistic terms, if we have a bias,

• then we can simply subtract this bias from all the measurement results
and thus, end up with measurements for which the mean error is 0.

Even normality makes sense. Indeed, usually:

• each measurement error is the joint effect of many different independent
factors, and,

• according to the Central Limit Theorem (see, e.g., [22]), the distribution
of such a joint effect is close to normal.

Indeed, empirical studies [19, 20] show that for about 60% measuring instru-
ments, the probability distribution of measurement errors is close to normal.

Need to go beyond normal distributions. On the other hand, the same
statistics means that for about 40% of the measuring instruments the probability
distribution is not close to normal.

So, the first thing we need to do is to extend out methods to this case –
when we know the probability distributions, and we know that at least some of
them are not normal.

But do we always know the probability distributions? To determine the
probability distribution of the measurement error, we need to thoroughly study
and test each individual sensor, each individual measuring instrument. Such a
testing involves comparing the results of these measurements with the results of
some much more accurate (“standard”) measuring instrument. This is usually
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possible, but it is a very expensive procedure – especially taking into account
that many sensors are now very cheap.

This procedure makes sense if we are planning a manned space flight or a
control system for a nuclear power station, where a wrong decision can lead
to catastrophic consequences. However, if, for the purpose of weather predic-
tion, we design a network of reasonably cheap temperature, wind, and humidity
sensors, the corresponding expenses are not worth the effort.

What do we know: possible information about uncertainty. Since we
do not always perform a thorough study of each sensor, in many situations:

• instead of knowing the exact probability distribution,

• we only have partial information about the corresponding probabilities.

In all cases, we should know a guaranteed upper bound ∆ on the absolute value
|∆x| of the measurement error: |∆x| ≤ ∆. Such an upper bound is needed,
since otherwise, if there is no guaranteed upper bound, this would mean that
the actual value can be as far from the measurement result as mathematically
possible: this is not a measurement, this is a wild guess.

Once we know the upper bound ∆, then, once we have the measurement
result x̃, the only thing that we can conclude about the actual (unknown) value
x is that this value belongs to the interval [x̃ − ∆, x̃ + ∆], and we have no
information about the probability of different values from this interval. This
case is known as interval uncertainty; see, e.g., [3, 13, 15, 21].

In some cases, we have partial information about the probabilities: e.g., we
know:

• the upper bound ∆̃ on the absolute value of the mean E[∆x] – this mean
is known as the systematic error component, and

• we know the upper bound σ̃ on the standard deviation, i.e., the mean
square value of the difference ∆x−E[∆x] between the measurement error
and its mean; this difference is known as the random error component.

This is probably the most frequent type of information about the measurement
accuracy [21].

There is also a case when some (or even all) estimates x̃i come not from
measurements, but from an expert estimates. In this case, the only information
that we have about the accuracy of this estimate also comes from the expert,
and the expert describes this information in imprecise (“fuzzy”) terms of natural
language, e.g., by saying that the accuracy is “most probably plus minus 0.5”.
Such situations are known as situations of fuzzy uncerainty; see, e.g., [1, 5, 14,
17, 18, 25].

Finally, there are cases when:

• for some measurements, we know the probability distributions of the mea-
surement errors,
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• for some other measurements, we only know interval bounds, and

• for yet other values, we only have fuzzy descriptions of their accuracy.

In this chapter, we show that in all these cases, multi-view ideas can be
helpful. Let us describe how these ideas can be helpful – by considering all
different types of uncertainty in the same order in which we have just listed
them.

9 Cased When We Know the Probability Distri-
butions but They Are Not Necessarily Normal

Description of the case. We consider the case when:

• we know the probability distributions of all the measurement errors ∆xi,

• for each of these distributions, the mean value is 0, and

• measurement errors corresponding to different measurements are indepen-
dent.

Analysis of the problem. For large n, the value ∆y is the sum of a large
number small independent random variables ci · ∆xi. Thus, due to the same
Central Limit Theorem that explains the ubiquity of normal distributions, the
distribution of ∆y is close to normal.

As we have mentioned earlier, a 1-D normal distribution is uniquely deter-
mined by its mean and standard deviation. Similarly to the normal cases, we
can conclude that the mean is 0, and that the standard deviation is determined
by the formula (3).

Thus, to compute σ, we can simply ignore all the information about the
known distributions and only take into account the variances σi. Once we have
found these values, we get the exact same mathematical problem as in the
normal case – and the exact same multi-view reformulation of this problem.
Thus, we can follow the same algorithm as for the normal case.

In other words, we arrive at the following algorithm.

Resulting algorithm: detailed description. First, for each i, we use our
knowledge of the probability distribution of the corresponding measurement
error ∆xi to compute the corresponding standard deviation σi.

Then, for each k = 1, . . . , N (where N is determined by the desired relative
accuracy), we do the following:

• first, for each i from 1 to n, we use the random number generator generat-

ing standard normal distribution, and get the corresponding values ξ
(k)
i ;

• then, we plug in the values xi = x̃i − σi · ξ(k)i into the algorithm f , thus
computing the difference

∆y(k) = ỹ − f
(
x̃1 − σ1 · ξ(k)1 , . . . , x̃n − σn · ξ(k)n

)
;
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• once we have all these values, we compute σ =

√√√√ 1

N
·
N∑
k=1

(
∆y(k)

)2
.

Important comment. In the algorithm for the normal case, we adequately
simulated the measurement errors, by emulating the exact same distribution
as we know they have. In this case, however, the actual distributions are not
normal, but we still use normal distributions.

In other words, in this case, the Monte-Carlo method that we use:

• is not a realistic simulation of measurement errors,

• it is a computational trick which leads to the same result as the actual
simulation but which is computationally much faster.

This trick makes computations faster since, with this trick, there is no need to
spend computation time emulating details of complex distributions: we can sim-
ply use standard (and fast) random number generator for normally distributed
variables.

We make this comment because we will observe the same phenomenon in
other algorithms as well:

• many of our Monte-Carlo simulations will not be adequately representing
the actual distributions,

• they will serve as mathematical tricks helping us to compute the desired
solution.

A reader should not be surprised by this: our main idea – reduction to a multi-
view problem – is also, in effect, a mathematical trick and not a direct repre-
sentation of the corresponding uncertainty quantification problem.

10 Case of Interval Uncertainty

Formulation of the problem.

• We know that the measurement errors ∆xi can take any values from the
interval [−∆i,∆i].

• Under this condition, we need to find the range{
∆y =

n∑
i=1

ci ·∆xi : |∆xi| ≤ ∆i for all i

}

of possible values of their linear combination ∆y =
n∑
i=1

ci ·∆xi.
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Analysis of the problem. The largest possible value of the sum is attained
when each of the terms ci ·∆xi is the largest. Let us consider two possible cases:
ci ≥ 0 and ci ≤ 0.

• If ci ≥ 0, then ci ·∆xi is an increasing function of ∆xi. Thus, its largest
value is attained when the variable ∆xi is the largest possible, i.e., when
∆xi = ∆i. For this value ∆xi, the term is equal to ci ·∆i.

• If ci ≤ 0, then ci ·∆xi is a decreasing function of ∆xi. Thus, its largest
value is attained when the variable ∆xi is the smallest possible, i.e., when
∆xi = −∆i. For this value ∆xi, the term is equal to ci · (−∆i) = −ci ·∆i.

In both cases, the largest possible value of each term is equal to |ci| ·∆i. Thus,
the largest possible value ∆ of ∆y is equal to the sum of these values

∆ =

n∑
i=1

|ci| ·∆i. (7)

Similarly, we can prove that the smallest possible value of ∆y is equal to −∆.
Thus, in the interval case, uncertainty quantification is reduced to the prob-

lem of computing the value (7).

What we can do to estimate ∆. Similarly to the probabilistic case, since
the data processing algorithm y = f(x1, . . . , xn) is given as a black box, the
only thing we can do is to try different tuples (∆x1, . . . ,∆xn); for each such
tuple:

• first, we plug in the values xi = x̃i−∆xi into the algorithm f(x1, . . . , xn),
resulting in the value y = f(x̃1 −∆x1, . . . , x̃n −∆xn), and

• then, we compute the difference ∆y = ỹ − y (and we know that this

difference is equal to
n∑
i=1

ci ·∆xi).

Reformulating the problem. Similarly to the probabilistic case, instead of
directly generating the value ∆xi, let us generate the auxiliary values ξi, and
then take ∆xi = ∆i · ξi.

In terms of ξi, the procedure of generating the corresponding value ∆y takes
the following form:

• first generate the values ξi;

• then, we plug in the values xi = x̃i−∆i·ξi into the algorithm f(x1, . . . , xn),
resulting in the value y = f(x̃1 −∆1 · ξ1, . . . , x̃n −∆n · ξn), and

• finally, we compute the difference ∆y = ỹ− y (which we know to be equal

to
n∑
i=1

ci ·∆i · ξi).
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In terms of the auxiliary quantities ξi, the expression (1) takes the form

∆y =

n∑
i=1

ci ·∆i · ξi. (8)

This expression can be simplified if we denote ai
def
= ci ·∆i, then the expression

(8) takes the form

∆y =

n∑
i=1

ai · ξi. (9)

Interestingly, in terms of ai, the desired expression (7) also gets a simplified
form:

∆ =

n∑
i=1

|ai|. (10)

Now, we are ready to describe the relation to multi-view techniques.

Relation to multi-view techniques. Similarly to the probabilistic case, let
us consider the two vectors:

• a vector ~a = (a1, . . . , an) formed by the values ai, and

• a vector ~ξ = (ξ1, . . . , ξn) formed by the values ξi.

In terms of these vectors:

• the value ∆y, as we have mentioned earlier, is simply a scalar (dot) product

~a · ~ξ of these two vectors, and

• the value ∆ – as describes by the formula (10) – is simply the `1-norm

‖~a‖1
def
=

n∑
i=1

|ai| of the vector ~a.

Thus, in these geometric terms, the newly reformulated problem takes the
following:

• there is a vector ~a = (a1, . . . , an) that we do not know;

• we want to find the `1-norm ‖~a‖1 of this vector;

• for this purpose, for different vectors ~ξ, we can compute the scalar prod-
uct ~a · ~ξ.

Similarly to the probabilistic case, knowing the scalar product is equivalent
to knowing the projection

π~ξ(~a) =
~a · ξ
‖ξ‖

of the unknown vector ~a on the 1-D space generated by the vector ~ξ. Thus, the
problem takes the following form:
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• we want to estimate some characteristic of the unknown multi-D object ~a

• by studying its projection on different 1-D spaces.

In this form, this is clearly a particular cases of the general multi-view recon-
struction problem.

Straightforward algorithm. In principle, similarly to the probabilistic case,
we can use the following straightforward algorithm to compute the desired
value ∆:

• for each i from 1 to n, we prepare the values ξ
(i)
1 , . . . , ξ

(i)
n for which ξ

(i)
i = 1

and ξ
(i)
j = 0 for all j 6= i;

• then, we apply the algorithm f to the values

x1 = x̃1 −∆1 · ξ(i)1 , . . . , xn = x̃n −∆n · ξ(i)n ,

thus computing the value y(i) = f(x̃1, . . . , x̃i−1, x̃i−∆i, x̃i+1, . . . , x̃n), and
compute ai = ỹ − y(i);

• finally, we compute ∆ =
n∑
i=1

|ai|.

However, this algorithm has the same main limitation as in the probabilistic
case: it requires too much computation time.

Monte-Carlo algorithm: main idea. To estimate ∆ faster, we can use the
known fact about Cauchy distribution, a probability distribution characterised
by the following probability density function:

f(x) =
1

π ·∆
· 1

1 +
x2

∆2

. (11)

The standard case is when ∆ = 1.
This fact is that if n independent random variables ξ1, . . . , ξn are distributed

according to the standard Cauchy distribution, then their linear combination
n∑
i=1

ai · ξi is distributed according to the Cauchy distribution with parameter

∆ =
n∑
i=1

|ai|. Thus, similarly to how we use normal distributions to estimate σ

in the probabilistic case, we can use Cauchy distribution in the interval case.
There are two additional computational problems here that we did not en-

counter in the probabilistic case:

• first, in contrast to the probabilistic case, we do not have a ready random
number generator generating Cauchy distribution; this problem can be
easily solved: we can take a random variable u uniformly distributed on
the interval [0, 1] (for which the random number generator exists), and
take

ξ = tan(π · (u− 0.5)); (12)
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• second, once we get a Cauchy distributed sample of values ∆y(k), there is
no standard way to estimate the parameter ∆; for this purpose, we can
use the Maximum Likelihood approach of finding the most probable value
∆; this leads to the need to solve the following system of equations:

N∑
k=1

1

1 +

(
∆y(k)

)2
∆2

− N

2
= 0. (13)

As a result, we arrive at the following algorithm (see, e.g., [6, 7, 8, 9, 10, 11, 24,
16] for details):

Resulting algorithm: first approximation. For each k = 1, . . . , N (where
N is determined by the desired relative accuracy), we do the following:

• first, for each i from 1 to n, we use the formula (12) and get the corre-

sponding values ξ
(k)
i ;

• then, we use the resulting vector ~ξ (k) to compute the corresponding
value ∆y(k).

Once we have all these values, we compute ∆ by solving the equation (13).

First approximation: detailed description. For each k = 1, . . . , N (where
N is determined by the desired relative accuracy), we do the following:

• first, for each i from 1 to n, we use the random number generator for

generating a random number u
(k)
i which is uniformly distributed on the

interval [0, 1], and then compute ξ
(k)
i = tan

(
π ·
(
u
(k)
i − 0.5

))
;

• then, we plug in the values xi = x̃i −∆i · ξ(k)i into the algorithm f , thus
computing the difference

∆y(k) = ỹ − f
(
x̃1 −∆1 · ξ(k)1 , . . . , x̃n −∆n · ξ(k)n

)
;

• once we have all these values, we compute ∆ by solving the equation (13).

Additional details: how to solve the equation (13). To find ∆, we can

use, e.g., a bisection algorithm starting with the interval

[
0, max
k=1,...,N

∣∣∆y(k)∣∣]:
• for the value ∆ corresponding to the left endpoint of this interval, the

left-hand side of the equation (13) is negative, while

• for the right endpoint, the left-hand side is positive.
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At each step, we take a midpoint of the previous interval, and select either
the left or the right half-interval, so that in the endpoints of the selected half-
interval, the left-hand side of (13) has different signs.

Important computational comment. Cauchy distributed values ∆xi can
be large, while linearization is only possible for small deviations ∆xi. To make
sure that all deviations are within the linearity range, we need:

• to normalize all the simulated measurement errors by dividing them by a
sufficiently large value M , and then

• re-scale the resulting values ∆y(k) back, by multiplying them by the same
value M .

A natural way to make sure that all simulated values ∆xi are within the range
[−∆i,∆i] – or, equivalently, that all the values ξ are within the interval [−1, 1]

– is to divide all the simulated values ξ
(k
i by the largest of their absolute values.

As a result, the actual algorithm has the following modified form:

11 Final Algorithm for the Interval Case

What is given. We are given:

• the values x̃1, . . . , x̃n;

• the values ∆1, . . . ,∆n; and

• an algorithm f(x1, . . . , xn) given as a black box.

We also know the value ỹ = f(x̃1, . . . , x̃n).

What we want. Our goal is to compute the range

{y = f(x1, . . . , xn) : xi ∈ [x̃i −∆i, x̃i + ∆i] for all i}.

Algorithm. To compute the desired range:

• first, for each i from 1 to n, we use the random number generator for

generating a random number u
(k)
i which is uniformly distributed on the

interval [0, 1], and then compute ξ
(k)
i = tan

(
π ·
(
u
(k)
i − 0.5

))
;

• we then compute M = max
i,k

∣∣∣ξ(k)i

∣∣∣;
• then, we plug in the values

xi = x̃i −∆i ·
ξ
(k)
i

M
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into the algorithm f , thus computing the value

∆y(k) = M ·

(
ỹ − f

(
x̃1 −∆1 ·

ξ
(k)
1

M
, . . . , x̃n −∆n ·

ξ
(k)
n

M

))
;

• once we have all these values, we compute ∆ by solving the equation

N∑
k=1

1

1 +

(
∆y(k)

)2
∆2

− N

2
= 0. (13)

To find ∆, we can use a bisection algorithm starting with the interval[
0, max
k=1,...,N

∣∣∆y(k)∣∣]:
• for the value ∆ corresponding to the left endpoint of this interval, the

left-hand side of the equation (13) is negative, while

• for the right endpoint, the left-hand side is positive.

At each step, we take a midpoint of the previous interval, and select either
the left or the right half-interval, so that in the endpoints of the selected half-
interval, the left-hand side of (13) has different signs.

The resulting range is equal to [x̃−∆, x̃+ ∆].

Methodological comment. Here, as we warned, we have another example
when a Monte-Carlo approach is not based on truthful simulation:

• we do not know the actual probability distribution, but

• we select a certain distribution for simulation – which is most probably
different from the actual (unknown) probability distribution.

Similarly to the case of non-normal distributions, here too this use of Monte-
Carlo simulations is a mathematical trick helping us to compute the result fast.

12 What If We Have Information about System-
atic and Random Error Components

Description of the case: reminder. Let us consider the case which is most
common in measurement practice, when for each measurement error ∆xi, we
know:

• the upper bound ∆̃i on the absolute value |E[∆xi]| of its mean value, and

• the upper bound σ̃i on its standard deviation.
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What can we then conclude about the mean m and the standard deviation s of

the value ∆y =
n∑
i=1

ci ·∆xi?

Analysis of the problem. From the formula (1), we conclude that

m = E[∆y] =

n∑
i=1

ci · E[∆xi]. (14)

We only information that we have about each value E[∆xi] is that this value is

somewhere in the interval
[
−∆̃i, ∆̃i

]
. Thus, from the mathematical viewpoint,

this is exactly the problem of uncertainty quantification under interval uncer-
tainty – so we can use the above-described interval algorithm to find the largest
possible value ∆̃ of the absolute value |m| of the mean m.

For the standard deviation, we have the formula (3), i.e., we have σ2 =
n∑
i=1

c2i · σ2
i . However, here, in contrast to the previously described probabilistic

case:

• we do not know the standard deviations σi,

• we only know the upper bounds σ̃i for which σi ≤ σ̃i.

The expression σ2 =
n∑
i=1

σ2
i is increasing with respect to each of the unknowns

σi. Thus, its largest possible value is attained when each of the values σi is
the largest possible, i.e., when σi = σ̃i. For σi = σ̃i, the resulting largest

possible value σ̃ has the form (σ̃)
2

=
n∑
i=1

c2i · (σ̃i)
2
. This is the same formula as

for the probabilistic case – so, to compute σ̃, we can use the above-described
probabilistic algorithm.

Thus, we arrive at the following algorithm;

Algorithm. First, we apply the interval algorithm to transform:

• the bounds ∆̃i on the absolute value of the means of the measurement
errors into

• the bound ∆̃ on the absolute value of the mean of the resulting approxi-
mation error ∆y.

Then, we apply the probabilistic-case algorithm to transform:

• the bounds σ̃i on the standard deviations of the measurement errors into

• the bound σ̃ for the standard deviation of the resulting approximation
error ∆y.
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13 Fuzzy Case

Formulation of the problem. Suppose now that for each i, we only have fuzzy
information about each estimate x̃i, i.e., that we have a fuzzy number µi(xi) that
describes the corresponding uncertainty. We want to find the membership func-
tion µ(y) that describes the result of applying the algorithm y = f(x1, . . . , xn)
to these uncertain inputs.

Analysis of the problem. In fuzzy techniques, the usual way to transform
the initial uncertainty into the uncertainty of the result of data processing is
to use the so-called Zadeh’s extension principle, which basically means that for

each α ∈ (0, 1], the corresponding “α-cut” y(α)
def
= {y : µ(y) ≥ α} is obtained

from the α-cuts of the inputs xi(α) = {xi : µi(xi) ≥ α} by the usual interval
formula

y(α) = {f(x1, . . . , xn) : xi ∈ xi(α) for all i}.

Thus, for each α, we can apply the above interval algorithm to the corresponding
α-cuts.

For this purpose, each α-cut interval needs to be represented in the center-
radius form, i.e., as [x̃i −∆i, x̃i + ∆i], where:

• x̃i is the interval’s center and

• ∆i its half-width (“radius”).

Thus, we arrive at the following algorithm.

Algorithm. For each α, we:

• represent each α-cut xi(α) in the center-radius form, and

• then use the interval algorithm to compute the range.

This range will be the desired α-cut y(α) for y.

14 General Case: What If We Know Different
Inputs with Different Uncertainty

Formulation of the problem. Let us consider the most general case, when
we have inputs of all possible types. For the following three types of uncertainty,
we know the measurement result x̃i, and we also have the following additional
information:

• For some inputs i, we know that the mean value of the measurement
error is 0, and we know the standard deviation σi of the measurement
error. We will denote the set of all such inputs by Ip, where p stands for
“probabilistic”.
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• For other inputs i, we know the upper bound ∆i on the absolute value of
the mean of the measurement error, and we know the upper bound σi on
the standard deviation of the measurement error. We will denote the set
of all such inputs by Im, where m stands for “measurements”.

• For some inputs i, we only know the upper bound ∆i on the absolute
value of the measurement error. We will denote the set of all such inputs
by Ii, where i stands for “interval”.

Finally, for some inputs, instead of the measurement result, we know only the
fuzzy number µi(xi). We will denote the set of all such inputs by If , where f
stands for “fuzzy”.

Analysis of the problem and the resulting algorithm. If the set If is
non-empty, let us pick some values α ∈ (0, 1].

Then, we extend the definitions of ∆i, σi, and x̃i to all indices i:

• for i ∈ Ip, we take ∆i = 0;

• for i ∈ Ii, we take σi = 0; and

• for i ∈ If , we take σi = 0; as ∆i, we take the radius of the α-cut xi(α),
and as x̃i, we take the center of the α-cut.

Under this definition, for each i, the corresponding value ∆xi
def
= x̃i− xi can be

represented as the sum
∆xi = ∆xsi + ∆xri, (15)

of “systematic” and “random” components, where:

• the only thing we know about ∆xsi is that |∆si| ≤ ∆i, and

• the only thing we know about ∆xri is that it is a random variable with 0
mean and standard deviation not exceeding σi.

Substituting the expression (15) into the formula (1), we conclude that:

∆y = ∆yr + ∆ys,

where we denoted ∆yr
def
=

n∑
i=1

ci ·∆xri and ∆ys
def
=

n∑
i=1

ci ·∆xsi.

We can therefore conclude that:

• the only thing we know about ∆ys is that |∆ys| ≤ ∆, and

• the only thing we know about ∆yr is that it is a random variable with 0
mean and standard deviation not exceeding σ,

where:

• ∆ is obtained by applying the interval algorithm to the values ∆i, and
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• σ is obtained by applying the probabilistic algorithm to the values σi.

If some of the inputs are described by fuzzy uncertainty, the procedure of
estimating ∆ needs to be repeated for several different values α (e.g., for α =
0.1, 0.2, . . . , 1.0), so that ∆ becomes a fuzzy number.

Important comment. Instead of treating systematic and random components
separately (as we did), a seemingly reasonable idea is:

• to transform them into a single type of uncertainty, and then

• to combine the transformed uncertainties.

Such a transformation is, in principle, possible:

• If all we know is that the measurement error is located on the interval
[−∆i,∆i], but we have no reason to believe that some values on this
intervals are more probable than others, then it is reasonable to assume
that they are equally probable – i.e., to consider a uniform distribution
on this interval; see, e.g., [4]. For the uniform distribution, the mean is 0,

and the standard deviation is equal to
1√
3
·∆i.

• On the other hand, if we have a normally distributed random variable ∆xi
with mean 0 and standard deviation σi, then, with high certainty, we can
conclude that this value is located within the 3σ interval [−3σi, 3σi]; see,
e.g., [22].

The problem is that these seemingly reasonable transformations may drastically
change the result of uncertainty quantification. Let us show this on the simplest
example when f(x1, . . . , xn) = x1 + . . .+ xn, so that c1 = . . . = cn = 1, and all
the initial values ∆i and σi are equal to 1.

In this case, for interval uncertainty we get ∆ =
n∑
i=1

|ci| ·∆i = n. However:

• if we transform it into the probabilistic uncertainty, with σi =
1√
3
·∆i =

1√
3

and

• process this probabilistic information,

then we will get σ2 =
n∑
i=1

c2i · σ2
i =

1

3
· n, so σ =

1

3
·
√
n. If we now form an

interval bound based on this σ, we will get ∆ = 3σ =
√

3 ·
√
n – a value which is

much smaller than ∆ = n. So, if we use this transformation, we will drastically
underestimate the uncertainty – which, in many practical situations, can lead
to a disaster.

Similarly, in the case of probabilistic uncertainty, we get σ =

√
n∑
i=1

c2i · σ2
i =

√
n. However:
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• if we first transform it into interval uncertainty, with ∆i = 3σi = 3, and
then

• apply interval estimate to this new uncertainty,

we will get ∆ =
n∑
i=1

|ci| ·∆i = 3n. If we transform this value back into standard

deviations, we get σ =
1

3
· ∆ =

√
3 · n – a value which is much larger than

σ =
√
n. So, if we use this transformation, we will drastically overestimate the

uncertainty – and thus, fail to make conclusions about y which could have made
if we estimated the uncertainty correctly.

Bottom line: let 100 flowers bloom, do not try to reduce all uncertainties to
a single one.
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Logic, Kluwer, Boston, Dordrecht, 1999.

[19] P. V. Novitskii, I. A. Zograph, Estimating the measurement errors, Ener-
goatomizdat, Leningrad, 1991 (in Russian).

[20] A. I. Orlov, “How often are the observations normal?”, Industrial Labora-
tory, 1991, Vol. 57, No. 7, pp. 770–772.

[21] S. G. Rabinovich, Measurement Errors and Uncertainties: Theory and
Practice, Springer, New York, 2005.

[22] D. J. Sheskin, Handbook of Parametric and Non-Parametric Statistical Pro-
cedures, Chapman & Hall/CRC, London, UK, 2011.

[23] K. S. Thorne and R. D. Blandford, Modern Classical Physics: Optics, Flu-
ids, Plasmas, Elasticity, Relativity, and Statistical Physics, Princeton Uni-
versity Press, Princeton, New Jersey, 2017.

[24] R. Trejo and V. Kreinovich, “Error Estimations for Indirect Measurements:
Randomized vs. Deterministic Algorithms For ‘Black-Box’ Programs”, In:
S. Rajasekaran, P. Pardalos, J. Reif, and J. Rolim (eds.), Handbook on
Randomized Computing, Kluwer, 2001, pp. 673–729.

[25] L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8, pp. 338–
353.

27


