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Abstract—In many practical situations, we know that there
is a functional dependence between a quantity ¢ and quantities
ai,-...,an, but the exact form of this dependence is only known
with uncertainty. In some cases, we only know the class of possible
functions describing this dependence. In other cases, we also
know the probabilities of different functions from this class —
i.e., we know the corresponding random field or random process.
To solve problems related to such a dependence, it is desirable
to be able to simulate the corresponding functions, i.e., to have
algorithms that transform simple intervals or simple random
variables into functions from the desired class. Many of the real-
life dependencies are very complex, requiring a large amount
of computation time even if we ignore the uncertainty. So, to
make simulation of uncertainty practically feasible, we need to
make sure that the corresponding simulation algorithm is as
fast as possible. In this paper, we show that for this objective,
ideas behind neural networks lead to the known Karhunen-Loéve
decomposition and interval field techniques — and also that these
ideas help us go — when necessary — beyond these techniques.

Index Terms—neural networks, interval fields, Karhunen-
Loéve decomposition

I. GENERAL PROBLEM: NEED FOR SIMULATIONS UNDER
UNCERTAINTY

A. Dependencies are ubiquitous

In a nutshell, the main purpose of engineering is to make
the world better: whether:

¢ by controlling natural phenomena (e.g., in damming
flooding rivers) or

o by coming up with devices (and ways to use them) that
will make the world better for us.

For this purpose, we need to describe the current state of
world, and to predict how the state of the world will change
under our actions.

Describing the state of world means describing, at each
spatial point (z,y) (or, in the 3-D case, (,y, z)), the values
of all relevant quantities ¢ at this point. In other words, we
want to know the functions ¢(z,y) or ¢(z,y, z).
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To decide how to change the state of the world, we need to
know how the resulting state — i.e., how the resulting values of
different quantities — will depend on the parameters ay, ..., a,
characterizing possible actions. In other words, we want to
know the dependence g(a1,...,an).

In all these cases, we want to known a function — or
functions.

B. Need to take uncertainty into account

Most of the information about the world comes from mea-
surements, and measurements are never absolutely accurate,
measurements results are always approximate; see, e.g., [16].
Similarly, the information about dependencies comes from
measurements. As a result:

« we never know the exact function q(as,...,a,);
o instead, there is a whole class F of different functions
which are all consistent with the known knowledge.

In many cases:

o in addition to knowing this set F,

o we also know the frequencies (= probabilities) with which
different functions from the class JF are expected to occur
in similar situations.

In mathematical terms, this situation is known as a random
field, or, in the 1-D case, a random process; see, e.g., [22].

C. Need to simulate

One of the most useful methods of studying the world —
especially when the equations are too complicated to solve
explicitly — is by computer simulation of the corresponding
processes.

D. Need to take uncertainty into account during simulations

To make situations realistic, we need to take uncertainty
into account. For this purpose, it is desirable to come up with
simulations that would:

o produce different functions from the corresponding class
F,

« and, if we know the frequencies (probabilities) of differ-
ent function, produce different functions from the class
F with exactly this frequency.



E. What can be the input to such simulations

To simulate different functions from the given class, a rea-
sonable idea is to use simplest 1-D type of the corresponding
uncertainty as inputs:

« In situations when we do not know the probabilities, when
we only know the class (= set) F, a natural idea is to use
numbers for which we also know only they belong to
some set of real numbers. The simplest such set is an
interval [—1,1]. So, a natural idea is to use, as inputs,
numbers ¢y, . ..,cy from the interval [—1,1].

o In situations when we know the probabilities, a reason-
able idea is to use independence 1-D random variables c;
with some simple distributions: e.g., uniformly distributed
on the interval [0, 1] or normally distributed with mean 0
and standard deviation 1.

So, we need algorithms that would transform the values
c= (617"'561\7)

into the corresponding functions f.(a1, ...
F.

, Gy, ) from the class

F. Problem: we need feasible-to-compute algorithms

The dependencies from the class F are often rather com-
plex, their computation is very time-consuming even if we
ignore the uncertainty. For example, accurately predicting
tomorrow’s weather require spending several hours on a high-
performance computer to solve the corresponding system of
partial differential equations.

Taking uncertainty into account would make the computa-
tional problems even more complex and thus, requiring even
more computation time. It is therefore desirable to come up
with the fastest possible simulation algorithms.

G. What we do in this paper

In this paper, we show that the main ideas behind neural
networks help explain why KL-decomposition and interval
fields are efficient in such uncertainty-related simulations.

We also show that these ideas help to go beyond these
techniques — and we also explain why we need to go beyond
these two techniques.

II. MAIN IDEAS BEHIND NEURAL NETWORKS: A BRIEF
REMINDER

A. What we do in this section

In this section, we recall the main ideas behind neural
networks — not all the ideas, but only those that will be helpful
in solving our problem.

Namely, what we will recall is how the need to make
computations fast naturally lead to neural networks — specifi-
cally, to traditional neural networks [3], [11], [12], that were
prevalent before the deep learning revolution (see, e.g., [7],

[11], [13]).

B. What elementary steps can we use to speed up computa-
tions

Every computation is composed of elementary steps. To
speed up computations, a reasonable idea is to perform several
computational steps in parallel, on different processors. This is
how high-performance computers work — in particular, high-
performance computers that predict weather and solve other
complex computational problems.

For such computations, the overall computation time is the
sum of computation times of different computational steps
(performed in parallel). Thus, to speed up computations, we
need:

« to make these steps as fast as possible, and

o to minimize the overall number of such steps.

C. What are the fastest possible steps?

On each computational step, we transform some inputs
Z1,...,T, into one or more outputs y. The output y is
usually uniquely determined by the inputs, so, in mathematical
terms, we compute the value f(z1,...,x,) of an appropriate
function.

Which functions are the easiest to compute? In general,
functions can be linear and non-linear. Clearly, linear functions

Yy=wo+wy T +...+wWy Ty

are the easiest (and thus, the fastest) to compute. So linear
functions must be among the corresponding elementary com-
putational steps.

D. Need for nonlinear steps

We cannot have only linear steps. If we only use linear
steps, then what we will compute is a composition of linear
functions — and this composition is always linear. On the other
hand, many real-life processes are non-linear; see, e.g., [6],
[21]. Thus, in addition to linear computational steps, we also
need to use some non-linear elementary computational steps.

E. Which nonlinear steps shall we use?
Which nonlinear functions should we use? In general:

« the more inputs we use,
o the more time is needed for computations.

Thus, the fastest to compute are the nonlinear functions that
have the smallest possible number of inputs — only one. So:

« in additional linear elementary computational steps,
e we should also use step that consist of applying a
nonlinear function y = f(z) to a single input.

F. Layers
Computations on a parallel computer comes in what is
called layers:

o first, all the processors perform one type of operations,
« then they perform other types of operations, etc.

As we have argued, each layer must consist of:

o cither computing linear functions,
« or computing non-linear functions of one variable.



Let us denote:

e a linear layer by L, and
« a nonlinear layer by N.

G. Layers must be interleaving

Our goal is to speed up computations. So, it does not
make sense to have a linear layer following a linear layer.
Indeed, in such a L — L configuration, all we are computing
are compositions of linear functions — which, as we have
mentioned, are also linear. Thus, we could as well compute
these functions faster, by using a single linear layer instead of
two.

Similarly, it does not make sense to have a nonlinear layer
following a nonlinear layer. Indeed, in such a N — N configura-
tion, all we are computing are compositions of functions of one
variable, i.e., expressions y = f(g(x)) which are also simply
functions of one variable. Thus, we could as well compute
these functions faster, by using a single nonlinear layer instead
of two.

So, layers must interleave:

« a linear layer (which is not final) must be followed by a
nonlinear layer, and

« a nonlinear layer (which is not final) must be followed
by a linear layer.

H. How many layers do we need?

As we have mentioned, to speed up computations, we need
to use the smallest possible number of layers. Let us analyze
how many layers we need.

1. One layer is not sufficient

With one layer, we can compute either linear functions, or
nonlinear functions of a single input. In practice, however,
many real-life dependencies are nonlinear, and have more than
one input.

Thus, one layer is not enough.

J. What about two layers: two options

In the case of two layers, we can have:

o cither a linear layer followed by a nonlinear layer,
« or a nonlinear layer followed by a linear layer.

Let us show that in both cases, we cannot cover all possible
dependencies. Specifically, we will show that we are not even
able to ocver the product
Yy =21 - T2

K. NL — L configuration

In the case of NL — L configuration, for n = 2 inputs:

o In the first layer, we compute the values

fi(-rl) and/or gj(l’g).
« In the second layer, we compute a linear combination of
these results, i.e., the value
wo + w1 - fi(zy) +wo - folzy) +... +

v1 - g1(x2) +v2 - ga(wa) + ...

We can combine:

o all the value depending on z; into a single expression,
and
« all the values depending on x> into a single expression.

Thus, we get
y = Fi(x1) + Fa(22),

where we denoted
def
Fl(xl) = Wo + w1 - fl(xl) —+ wa - fz(.’fl) + ...

and
Fy(x2) = v1 - g1(w2) +v2 - ga(22) + ...

Let us show that the expression x - zo cannot be described in
the form F} (z1) + F2(x2). Indeed, if we could have

xy - xp = Fi(21) + Fa(x2),
then:
o from the fact that 0 - 29 = O for all 25, we conclude that
O = Fl(O) =+ FQ(CCQ),
i.e., that
Fy(z9) = —F1(0) = const;

o similarly, from the fact that z; - 0 = 0 for all z;, we
conclude that

0 = Fl(ifl) —+ FQ(O),

i.e., that
Fi(z1) = —F5(0) = const.

Thus, the sum F}(z1) + F5(x2) of two constant functions is
also a constant, not depending on x; — and cannot thus be
equal to the product z; - zo.

L. L — NL configuration
In the case of L — N L configuration:
« in the first layer, we compute a linear combination

wo + w1 - T1 + w2 - To,

and
« in the second later, we apply a nonlinear function f(x)
of one variable to this linear combination, resulting in
F(x1,22) = f(wo + w1 - 21 + w3 - x3).

Let us show that the product x; - o cannot be equal to such
an expression.
Indeed, in the case of such an equality
11 = F($17ZL'2) = f(wo + w1 - X1 + wsy - CCQ),

we must have w; # 0 and ws # 0 — otherwise the expression
F(x1,x2) will not depend on x; or on x2. Now, for each xo,
we have

0=0-x :F(w0+w2-x2).

Since wy # 0, the expression

wo + W - Ta



can take any real value x, so we have F(z) = 0 for all z —
and therefore, it is not possible to have

0=F(1-1)=1-1.
So, 2 layers are not enough, we must have at least 3 layers.

M. Which 3-layer configuration is the fastest

Since layers must interleave, we can have two possible 3-
layer configurations: L — NL — L and NL — L — NL.
o In the first case, we have one nonlinear layer and two
linear layers.
« In the second case, we have two nonlinear layers and one
linear layer.
Since, as we have mentioned, a linear layer is faster than a
nonlinear one, the L — NL — L configuration is faster.

N. A general formula for the L — NL — L configuration

In the first later, each processor k computes a linear com-
bination of inputs:

2k = Wgo + Wg1 - X1+ ... + Wgp - Thy-

In the second layer, we apply some nonlinear function of each
outputs yy, of the first layer, computing y, = fi(yx) for some
functions f (). Finally, on the last linear layer we compute
a linear combination of the values yy:

y=Wo+Wy-y1+...+ Wk - yx,
i.e., the value
y=Wo+Wi- fi(wio+wi -1+ ...+ wWin-Tp) + ...+

Wk - fx(Wiko +wk1 -1+ ...+ Wiy - Tp)- (1)

Comment. It should be mentioned that this is exactly what the
traditional neural networks compute. The only difference is
that they usually use the same function fi(z) = f(z) for all
intermediate results.

O. Three layers are sufficient

The fact that a 3-layer configuration is sufficient to represent
any continuous function on bounded domain with any desired
accuracy follows from the fact that each such function can be
represented as a Fourier transform, i.e., as a linear combination
of sines of linear combinations of the inputs.

This potentially infinite linear combination can be approxi-
mated, with any given accuracy, by a finite sum of sines, i.e.,
by the expression (1) for

fil@) = ... = fx(z) = sin(z).
III. MAIN IDEAS BEHIND NEURAL NETWORKS EXPLAIN
KL-DECOMPOSITION AND INTERVAL FIELDS
A. What we want: a reminder

We want to have a fast algorithm that would transform
values ¢ = (c1,...,cn) that represent simple uncertainties
— interval or random — into the corresponding values

fc(al, ey an).

B. Which are the fastest possible algorithms for this purpose

As we have mentioned earlier, the fastest possible algo-
rithms are linear. Thus, we arrive at the following expression
which is linear in ¢;:
felag, .. San)terwi(ar, .. an) .+

Sy Qp). (2)

C. Interval case: main observation

B a'm) - wO(ah ..

en -wp(ag, ..

In situations when each c; is taking values from the interval
[—1,1], the expression (2) becomes a particular case of so-
called interval fields, a useful techniques for analyzing such
uncertainty; see, e.g., [1], [2], [9], [23].

D. Interval case: detailed analysis

In general, an interval field is defined as the class of all
functions of type (2) when each c¢; are in a given interval
[¢;, Ci]. Let us show that this general definition can be reduced
to the above case, when all the values come from the interval
[—1,1].

Indeed, each interval [c;, ;] can be represented as

where _
~ def C; T C;
C; =
2
is the interval’s midpoint, and
A, def ¢ — ¢
2

is the interval’s half-width, also known — taking into account
that an interval is a natural 1-D analogue of a 2-D disk — as
its radius.

In these terms, each number ¢; from the interval [¢;,¢;] can
be represented as ¢; = ¢; +r; - A;, where r; takes all possible
values from the interval [—1, 1]. Thus, the expression (2) takes
the form

fc(a’la"' ;am) = wo(a'17"'7a”l’b)+
(El + 7 'Al) -wl(al,...,an)+...+
(EN +7rN - AN) -wN(al,...,an),

i.e., the form

frlar, ... an) = Wola,...,an)+r1-Wi(ay,...,am)+. ..+
ry - Wi(a, ..., am),
where we denoted
Wo(ai, ..., an) def wo(ai, ..., an)+
¢ wi(al,...,an) +...+cy-wn(a,...,a,)
and
Wi(ai, ..., an) def Ay - wg(ay, ... an),

and each variable r, takes all possible values from the interval

[~1,1].



E. Computational comment

To make computations faster, it is desirable to have a
representation (2) that uses as few terms N as possible. Such
a reduction is possible. Indeed, in the linear space of all
functions, terms ¢y -wg (a1, ..., ay,) corresponding to different
values ¢; € [—1, 1] form a straight line formed by endpoints:
., an) (corresponding to ¢, = 1) and
., ay) (corresponding to ¢ = —1).

o Wk (al, ..

° 7wk(a1, ..
The set of all the functions of type (2) — the sum of all possible
sums of such terms — is known as the Minkowski sum of
such intervals. A Minkowski sum of straight line intervals is
known as a zonotope, and it is known that zonotopes can be
approximated by zonotopes with smaller number of terms; see,
e.g., [4], [10], [20].

FE. Probabilistic case

In the case when ¢; are independent random variables, a
particular case of the expression (2) is Karhunen-Loéve (KL)
representation of a random field — to be more precise, as
a finite approximation to a generic potentially infinite KL
representation; see, e.g., [19], [22].

G. Conclusion of this section

Thus, the main ideas behind neural networks indeed explain
the empirical success of KL-decomposition and interval field
techniques.

IV. NEED TO GO BEYOND KL-REPRESENTATIONS AND
INTERVAL FIELDS

A. Which random processes can be represented by KL repre-
sentations

In the general probabilistic case, the expression (2) is a sum
of a large number of independent random variables

C; - wi(al, .. .,an).

In general, each of these terms is reasonably small — otherwise,
if a few of these terms were domineering, we could have left
only these terms and ignore the others.

It is known that, under reasonable conditions, the distri-
bution of the sum of a large number of small independent
random variable is close to Gaussian. This follows from the
Central Limit Theorem — see, e.g., [18] — according to which
the distribution of such a sum tends to Gaussian when the
number of terms increases.

Thus, the expression (2) only works for Gaussian random
fields — this is how KL representation is usually used.

B. Need to go beyond KL representations
As we have mentioned, the uncertainty comes from mea-
surement errors. It is known that:

o while many measurement errors are indeed normally
distributed,
o almost a half of them is not; see, e.g., [?], [15].
To describe such non-Gaussian distributions, we need to go
beyond KL-representations.

C. Non-probabilistic case; which classes of functions can be
represented by interval fields

Each segment [—1,1] - w;(aq,...,a,) is a convex set. It is
known the Minkowski sum of convex sets is a convex set; see,
e.g., [17].

Thus, only convex sets of functions can be represented in
the form (2).

D. Need to go beyond interval fields

Not all sets of possible values are convex. Indeed:

¢ it is known that a nonlinear transformation, in general,
transforms convex sets into non-convex ones, and,

« as we have mentioned, many real-life transformations are
nonlinear.

V. IDEAS BEHIND NEURAL NETWORKS EXPLAIN HOW TO
GO BEYOND KL-DECOMPOSITION AND INTERVAL FIELDS

A. What is a natural next step after linear transformations:
reminder

As we have mentioned earlier, the need to perform com-
putations fast leads to a layered computation scheme, with a
small number of linear (L) and nonlinear (V) layers, in which
each element of a nonlinear layer applies a nonlinear function
of one variable to its input.

In the above text, we showed that KL-decomposition and
interval fields correspond to using just one linear layer. Since,
as we have shown, in many practical situations, we need to
go beyond these techniques, we therefore need to turn to the
next fastest approach, when we have two layers.

Since the layers must interleave, we have two possible 2-
layer configurations:

e NL—L and
e L-—NL.

Let us analyze these two configurations one by one.

B. NL — L approach: analysis

For our problem, NL — L approach means that:

« we first apply some nonlinear transformations ¢; — f;(c;)
to the inputs ¢;, and
o then perform a linear transformation:

fc(al, I

f1(01> ~w1(a1,...

7am) = wO(a17~" 7a/’n)+

Jap) .. F
Sy lp)- (3)

fN(CN) . wN(al, ..

Will this help? Not really:

o In the probabilistic case, the variables f;(c;) are still
independent, so the same Central Limit Theorem still
shows that, as a result, we get a Gaussian field or a
Gaussian process.

« In the interval case, for continuous functions f;(c;), the
range of this function when ¢; € [—1,1] is still an
interval, so we still get an interval field.



C. L — NL approach: formulas

Since we cannot use N L — L approach, a natural idea is to
use the L — N L approach, i.e., to apply a nonlinear function
f(x) to the result (2) of linear processing. This way, we get
the following result:

fc(al, e

) am)

f wg(al,... -,an) (4)

D. This approach works

Empirical results show that the formula (4) — corresponding
to the L. — NL approach — indeed leads to a very good
description of non-Gaussian probabilistic uncertainty; see, e.g.,
[51, [8].

We hope that it will be as useful in describe non-convex
classes of functions.

E. What next?

While so far, the L — N L approach works well, as we have
mentioned, the L — N L approach cannot describe all possible
dependencies. So, at some point, we will encounter practical
situations when this approach needs to be replaced by a more
accurate one. How can we do it?

Again, the above-described main ideas behind neural net-
works provide a natural answer: we need to consider 3-layer
L— NL— L approach, i.e., to consider expressions of the type

fc(alwuaam) = Wo+
N
Wi fi | wio(ar,. - an) + Y e wii(ar, . an) | +
=1
A+ (5)

N
Wi - fx | wrolar,. .. an) + > ci-wrilay, ..., an)
=1
()

This approach already have the universal approximation prop-
erty — so it can describe the corresponding class of functions
(and, if appropriate, the probability distribution on this class
of functions) with any desired accuracy.
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