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Abstract. It is known that, in general, people overestimate the proba-
bilities of joint events. In this paper, we provide an explanation for this
phenomenon — as explanation based on Laplace Indeterminacy Principle
and Maximum Entropy approach.
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1 Formulation of the Problem

1.1 Description of the situation

In many practical situations, we need to estimate the probability that two events
A and B both happen — i.e., in other words, we need to estimate the joint
probability P(A & B). Often, the only information that we have about two events
A and B are their probabilities a = P(A) and b = P(B), and we have no
information about the relation between these two events.

In this case, what should be a reasonable estimate for P(A& B)?

1.2 A natural solution to such situations

This is an example of a situation when we need to make a decision under un-
certainty, i.e., in this case, when we do not have full information about the
probabilities. Such situations are ubiquitous, and in probability theory, there is
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a natural general approach to solving these problems. Its main idea is that differ-
ent possible probability distributions correspond, in general, to different amount
of uncertainty. A natural measure of uncertainty is the average number of binary
(“yes”-“no”) questions that we need to ask to uniquely determine the situation.
It is known that in situations when we have n alternatives with probabilities
P1,---,Pn, then this average number of questions is equal to Shannon’s entropy

S =— ;pi -logy(p;); see, e.g., [15].

i=

It is reasonable not to pretend that we have less uncertainty than we do. For
example, suppose that we know only that we have n alternatives, and we do not
have any information about the probabilities of these alternatives. It may be
that the probability of the first alternative is 1 and the probabilities of all other
alternatives are 0s. In this case, we have no uncertainty at all — so the entropy
is 0. But if we select this distribution, we will be inserting certainty where there
is a lot of uncertainty — e.g., we can have a probability distribution in which
p1 =...=py = 1/n, in which case S = log,(n).

To avoid artificially inserting certainty, it is reasonable to select, among all
possible distributions, the one with the largest possible value of entropy. This
approach is known as the Mazimum Entropy approach; see, e.g., [7].

In particular, for the case when we have n alternatives, and we have no in-
formation about their probabilities, Maximum Entropy approach implies that
we select the distribution in which all these alternatives have the same proba-
bility 1/n. This makes perfect sense: since we have no reason to prefer one of
the alternatives, it makes sense to assign the same probability to all of them.
This idea was first explicitly formulated by Laplace and is known as Laplace
Indeterminacy Principle.

1.3 What if we apply this approach to our situation

In our situation, we have fours possible alternatives: A& B, A& —B, A& B,
and 7A & —B. Once we select the probability p = P(A& B), we can find all
other probabilities:

P(A&~B) = P(A) — P(A&B) = a — p,
P(~A&B) = P(B) — P(A& B) = b—p, and
P(~A&-B)=1- P(A& B) — P(A& -~B) — P(~A& B) =
l-p—(a—p)—(b—p)=1+p—a—b.
In this case, the entropy has the form
—p - logy(p) — (a —p) - logy(a — p) — (b — p) - logy (b — p)—
(14+p—a—>)-logs(1+p—a—0b). (1)

Here, for every x, we have
In(z)
In(2)"

log,(z) =
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Maximizing the expression (1) is equivalent to maximizing the same expression
multiplied by In(3), i.e., the expression

—p-In(p) —(a—p)-In(a—p)—(b—p)-In(b—p)—(1+p—a—>b)-In(l1+p—a—>). (2)

Differentiating this expression with respect to p and equating the derivative to
0, we conclude that

—1-In(p)+1+In(a—p)+1+Inb—p)—1—In(l+p—a—>b) =0,

ie.,
—In(p) +In(a —p) +In(b—p) —In(l+p—a—0) =0.

Applying the exponential function to both sides and taking into account that
exp(0) =1, exp(In(z)) = z, exp(a+b) = a+b, and exp(a—b) = a/b, we conclude
that
p-(L+p-a-b)
(a—p)-(b—p) ’

i.e., equivalently, that
p-(I+p—a—b)=(a—p) - (b-p)
Opening parentheses, we get
p+pi—a-p—b-p=a-b—a-p—b-p+p-
Canceling equal terms in both sides, we conclude that
p=a-b.

So, in our situation, a reasonable estimate for the joint probability P(A & B) is
the product P(A) - P(B), corresponding to the case when the events A and B
are independent.

1.4 How do people actually estimate the joint probability

Empirical data shows that in situations when people know the probabilities
P(A) and P(B) of individual events A and B — and they have no additional
information — they often overestimate the probability P(A & B) of a joint event
A& B; see, e.g., [1,17,22,23]. This happens both when we explicitly ask them to
estimate the correspondiong probabilities, and when we extract their estimated
probabilities from their preferences.

In other words, they usually provide an estimate which is larger than the
product P(A) - P(B).

1.5 Formulation of the problem

How can we explain this phenomenon?
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1.6 Important comment
In most of the above-cited experiments, people were given:

— either situations in which both A and B are somewhat rare events with
non-zero probabilities, i.e., when 0 < a < 0.5 and 0 < b < 0.5,

— or situations in which both A and B are rather frequent events with some
uncertainty, i.e., when 0.5 < a <1 and 0.5 < b < 1.

2 Our Explanation

2.1 Main idea behind this explanation

In situations when we know the probabilities « = P(A) and b = P(B) of two
events A and B, what are the possible values of the joint probability p =
P(A& B)? It is known that the set of such possible values is determined by
the so-called Frechet inequality (see, e.g., [20]):

max(a +b—1,0) < p < min(a,b).
In other words, possible values of the joint probability p form an interval
[max(a + b —1,0), min(a, b)].

This is an example of an interval uncertainty; see, e.g., [6,11,13].

All values from this interval are possible, and we have no reason to conclude
that some values are more probable than others. It is therefore reasonable to
conclude that all these values are equally probable, i.e., that we have a uniform
distribution on this interval. As we have mentioned earlier, such a conclusion —
corresponding to Laplace Indeterminacy Principle — also follows from the Max-
imum Entropy approach.

According to decision theory (see, e.g., [4,5,9, 10,14, 15,19]), a rational per-
son should make decisions based on the expected value of the utility. In case
of a binary decision, this simply means using the expected (mean) value of the
unknown probability p. For the uniform distribution on an interval, the mean
value is the midpoint of this interval, i.e., the value

max(a +b—1,0) + min(a,b

2.2 This idea explains the observed overestimation: case when
0<a<05and 0 <b<0.5

Let us show that in both above cases, our main idea explains the observed
overestimation of joint probabilities.

Let us start with the case when 0 < a < 0.5 and 0 < b < 0.5. In this case,
a+b<1,somax(a+b—1,0) =0, and the formula (3) takes the form

b min;a, b). )
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There are two possible cases here: a < b and b < a. If b < a, then we can
simply rename A and B as, correspondingly, B and A. Thus, without losing
generality, we can assume that a < b. In this case, the formula (4) implies that
p = a/2. We need ro show that a-b < p = a/2. Indeed, in this case, b < 0.5.
Multiplying both sides of this inequality by a > 0, we get the desired inequality
a-b<p/2.

2.3 This idea explains the observed overestimation: case when
0.5<a<land 0.5<b< 1

Let us now consider the case when 0.5 < a < 1 and 0.5 < b < 1. In this case, we
a+b>1,s0omax(a+b—1,0) = a+b— 1. Similarly to the previous case, without
losing generality, we can assume that a < b and thus, min(a,b) = a. Then, the
formula (3) takes the form

a+b—1+a_2a+b—1
2 N 2 ’

()

The desired inequality

2 -1
a-b<% (6)

is equivalent to
2-a-b<2a+0b-—1,

i.e., by moving terms between sides, to
1-b<2a—2a-b=2a-(1-0). (7)

Since 0.5 < a, we have 1 < 2a. Multiplying both sides of this inequality by
1—5b > 0, we get the inequality (7) — and thus, the desired inequality (6) — which
is equivalent to (7).

So, in both cases, the reasonable estimate (3) is larger than the product a - b
— which explains the observed overestimation of joint probabilities.

2.4 'What about the general case?

Without losing generality, we can assume that a < b. We have considered cases
when both a and b are smaller than 0.5 and when both a and b are larger than
0.5. So, the only remaining case is when a < 0.5 < b. We can have two subcases:

— the subcase when a +b < 1, and
— the subcase when a + b > 1.

In the first subcase, we have max(a+b—1,0) = 0 and thus, p = a/2. In this
case, since 0.5 < b, we have a/2 < a - b. So, we have either the exact estimate,

or — when a > 0 and b > 0.5 — an underestimation. For example, when a = 0.4
and b = 0.6, the formula (3) leads to p = 0.2 < 0.4-0.6 = 0.24.
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In the second subcase, we have max(a +b — 1,0) = a + b — 1, and thus,
similarly to the case when both a and b are larger than 0.5, we conclude that
the value (3) is either the exact estimate — when @ = 0 or when b = 0.5 — or an
overestimation.

Let us describe, in the areas where a < b, subareas of overestimation (4) and
underestimation (—):

a=1

We have four equal-size triangles. In three out of four of them we have over-
estimation. This explains why in most cases, people overestimate joint probabil-
ities.

3 Discussion

3.1 Is there an inconsistency here?

Before we discuss possible consequences of our explanation, we need to first
clarify the situation, since what we described may sound fishy.

— In the first section of this paper, we used Maximum Entropy approach to
conclude that, when we only know the probabilities a = P(A) and b = P(B),
then the best estimate for P(A & B) must be the product a - b.

— However, in the previous section, we used the same Maximum Entropy ap-
proach to come up with a completely different formula.

At first glance, this may sound like an inconsistency, but it is not.

It is well known that the same Maximum Entropy approach can lead to
different answers — depending on how we formulate the problem. Let us give a
simple example.

— Suppose that all we know is that a quantity x — e.g., the standard deviation —
is somewhere on the interval [0, 1]. In this case, as we have mentioned earlier,
the Maximum Entropy approach recommends that we assume that all the
values from this interval are equally probable — i.e., that we have a uniform
distribution on this interval.
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— On the other hand, if all we know about x is that it is somewhere on the
interval [0, 1], then all we know about y = z? — e.g., about variance — is
that it is somewhere in the interval [0,1]. If we apply the same Maximum
Entropy approach to the distribution of y, then we can conclude that y is
also uniformly distributed on the interval [0, 1].

2

However, if z is uniformly distributed, then the distribution of y = x* is not

uniform, so these conclusions are indeed different.
3.2 What if we have three of more events?
Suppose now that we know the probabilities a; = P(A4;) of n different events

Aq,..., Ay, and we want to estimate the joint probability p = P(A; & ... & A,).
In this case, the only thing we know about p is that it belongs to the interval

[max(a; + ...+ ap — (n—1),0), min(aq, ..., a,)],

so the same logic as for the above case of two events leads us to the conclusion
that a reasonable estimate would be the midpoint of this interval, i.e., the value

max(a; + ...+ ay, — (n —1),0) + min(aq, ..., a,) (8)
5 .

It is important to mention that, e.g., for n = 3, this estimate is different from
what we would have obtained if we:

— first use the two-event formula to estimate the probability of A; & Ao, and
— then apply the same two-event formula to the events A; & A, and As.

For example, if a; = a2 = a3 = 0.6, then:
— On the one hand, the formula (8) leads to

max(1.8 —2,0) + 0.6
5 -

0.3.

— On the other hand, our estimate for P(A; & As) is

max(1.2-1,0)+0.6 0.2+0.6
2 2

0.4;

using the formula (3) to combine 0.4 and 0.6, we get

max(0.4+0.6 — 1,0+ min(0.4,0.6) _ 04 _
2 T2 Y

which is indeed different from 0.3.
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3.3 Computational conclusion

As we have mentioned, there are two reasonable way to apply Maximum En-
tropy approach to our situation, that lead to two different formulas: the product
formula a - b, and a different formula (3). As we have also mentioned, people, in
general, overestimate the joint probabilities — i.e., produce estimates which are
larger than a - b.

So, if we want to adequately describe human reasoning, we need to use general
“and”-combination rules which leads to values larger than a-b. Such rules — under
the name of t-norms — are typical is fuzzy logic; see, e.g., [2,8,12,16, 18, 24]. So,
we arrive at one more argument that fuzzy techniques are necessary if we want
to adequately describe human reasoning — and an adequate description of such
reasoning is one of the objectives of Al

3.4 Physical conclusions

In physical terns, the fact that the joint probability is, in general, larger than
the probability a - b corresponding to independent events means that there is,
in general, a correlation between many events. In plain English, this means that
everything in the world is interconnected — when formulated in these terms, this
becomes a truism: everything in the world is interconnected; see, e.g., [3,21].
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