
Citation: Kreinovich, V. Ordered

Weighted Averaging (OWA), Decision

Making Under Uncertainty, and Deep

Learning: How Is This All Related?.

Information 2022, 1, 0. https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Submitted to Information for

possible open access publication

under the terms and conditions

of the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Ordered Weighted Averaging (OWA), Decision Making Under
Uncertainty, and Deep Learning: How Is This All Related?

Vladik Kreinovich

University of Texas at El Paso; vladik@utep.edu
* Correspondence: vladik@utep.edu
† Current address: Department of Computer Science, University of Texas at El Paso, 500 W. University, El Paso,

Texas 79968, USA

Abstract: Among many research areas to which Ron Yager contributed are decision making under 1

uncertainty (in particular, under interval and fuzzy uncertainty) and aggregation – where he proposed, 2

analyzed, and utilized the use of Ordered Weighted Averaging (OWA). The OWA algorithm itself 3

provides only a specific type of data aggregation. However, it turns out that if we allows several 4

OWA stages one after another, we get a scheme with a universal approximation property – moreover, 5

a scheme which is perfectly equivalent to deep neural networks. In this sense, Ron Yager can be 6

viewed as a (grand)father of deep learning. We also show that the existing schemes for decision 7

making under uncertainty are also naturally interpretable in OWA terms. 8

Keywords: Ordered Weighted Averaging (OWA); decision making under uncertainty; deep learning 9

1. Introduction: How to Process Data 10

1.1. Need for stages of data processing 11

In order to start analyzing the relation between OWA, deep learning, and decision 12

making under uncertainty – several computer-topics – let us first recall why computers 13

are needed in the first place. The main objective of computers is to process data. Data 14

processing is usually performed in several stages. Which processing algorithms should we 15

select for each stage? 16

At each stage of a deterministic data processing, the result y is uniquely determined 17

by the inputs x1, . . . , xn – this is what “deterministic" means. In mathematical terms, this 18

means that at each stage we are computing a function of the inputs y = f (x1, . . . , xn). 19

Which functions should we select? 20

1.2. Linear stages 21

The simplest possible functions are linear functions

f (x1, . . . , xn) = a0 + a1 · x1 + . . . + an · xn.

They are ubiquitous in our description of the physical world, and there is a natural explana-
tion for this ubiquity: most real-world dependencies are smooth, and in a reasonable neigh-
borhood of each point x(0) =

(
x(0)1 , . . . , x(0)n

)
, a smooth function can be well-approximated

by a linear one:

f (x1, . . . , xn) ≈
(

x(0)1 , . . . , x(0)n

)
+

n

∑
i=1

∂ f
∂xi

·
(

xi − x(0)i

)
;

see, e.g., [1,9]. 22

It is therefore reasonable to allow linear stages, where a linear functions are computed. 23
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1.3. Need for nonlinear stages 24

We cannot only use linear stages, since in this case, all we would be able to compute 25

are compositions of linear functions, and it is known that a composition of linear functions 26

is always linear – while in real life, many processes are nonlinear; see, e.g., [1,9]. 27

Which nonlinear stages should we consider? 28

1.4. Importance of symmetries and invariance 29

To decide which nonlinear stages we should consider, let us recall how we acquire 30

knowledge about the laws of the physical world in the first place. 31

For example, how did we learn that any object left in mid-air will fall down with 32

the acceleration of 9.81 m/sec2? Someone (actually Galileo) performed this experiment 33

several times, and got this result. Then this person moved to a different location, and got 34

the same result, repeated this experiment at a later time – and got the same result. In other 35

words, this person performed shifts in space, shifts in time, rotations, etc. – and the results 36

did not change under these transformation. So, Galileo made a natural conclusion – that 37

this phenomenon is invariant with respect to all such transformations, so if we repeat this 38

experiment in another country, in another century, we will still observe the same behavior. 39

Such an invariance is behind all physical laws. When Ohm discovered his famous law 40

– that voltage is proportional to current – he first found out that this relation holds in his 41

lab. But then Ohm and others saw that the same relation happens in all locations, at all 42

moments of time – so it is indeed a universal physical law. 43

Physicists understand that invariances are the basis of all physical laws – see, e.g., [1,9], 44

to the extend that in modern physics, new theories are usually proposed not in terms of 45

differential equations – as in Newton’s times – but in terms of the corresponding symmetries. 46

Moreover, it turned out that many original physical theories, proposed first in terms of the 47

differential equations, can actually be equivalently reformulated in terms of appropriate 48

symmetries: this is true for Maxwell’s equations that describe electromagnetism, Einstein’s 49

General Relativity equations that describe gravity, Schroedinger’s equation that describes 50

quantum phenomena, etc.; see, e.g., [2,3,6]. 51

It is therefore reasonable to select nonlinear data processing stages which are invariant 52

– and ideally, invariant under as many naturaol transformations as possible. 53

1.5. Which transformation are natural? 54

What are the natural transformations? 55

Some natural transformations come from the fact that we can use different measuring 56

units to describe the same value of the physical quantity. For example, the height of 1.7 57

m is the same as the height of 170 cm. It is therefore reasonable to require that the result 58

of data processing not change if we change the value of the measuring unit – i.e., if we 59

apply the corresponding transformation x 7→ λ · x for an appropriate value λ. It is thus 60

reasonable to add these transformations to our list of natural transformations. 61

The numerical values of many quantities like temperature or time also depend on the 62

choice of a starting point. If we take, as a starting point for measuring time, a moment x0 63

years before the current Year 0, then all the numerical values will change from their original 64

values x to the new values x + x0. So, we should also add transformations x 7→ x + x0 to 65

our list of natural transformations. 66

In addition to such linear transformations, we often have nonlinear ones. For example, 67

we can measure the strength of an earthquake by the amount of released energy or by 68

its logarithm – known as the Richter scale. We can measure the intensity of a sound by 69

its energy or in a logarithmic scale – in decibels. There are many other natural nonlinear 70

transformations, the only thing they all have in common is that they are all continuous 71

and strictly increasing: what is larger in the original scale remaind larger after the transfor- 72

mation. It is therefore reasonable to consider all continuous increasing transformations as 73

natural. 74
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Yet another class of natural transformations corresponds to the case when several 75

inputs xi corresponds to the values of the same type of quantity – e.g., they are all moments 76

of time, or they are all energy values. In this case, a reasonable idea is that we can permute 77

them and get the exact same result. For example, if we bring together several objects 78

of weights x1, . . . , xn, the overall weight f (x1, . . . , xn) should not depend on the order in 79

which we brought these bodies together. Such permutations should therefore also be added 80

to the list of natural transformations. 81

1.6. Which functions are invariant with respect to all natural transformations? 82

Now that we decided which transformations to look into, let us analyze which compu- 83

tational stages – i.e., which functions y = f (x1, . . . , xn) – are invariant with respect to all 84

these transformations. 85

If all the values xi and y represent different quantities – which can be independently 86

transformed – then invariance would mean that for all continuous strictly increasing 87

transformations ti(xi) and t(y), if we have y = f (x1, . . . , xn), then we should have t(y) = 88

f (t1(x1), . . . , tn(xn)). Such invariance is not possible: indeed, if we take ti(xi) = xi and 89

t(y) = y + 1, then this would mean that y = f (x1, . . . , xn) implies y + 1 = f (x1, . . . , xn) 90

and that y = y + 1 and, thus, 0 = 1 – which is clearly impossible. 91

It is therefore reasonable to consider the case when all the quantities xi and y represent 92

the same quantity. In this case, invariance means that for any continuous strictly increasing 93

function t(x), if we have y = f (x1, . . . , xn), then we should have t(y) = f (t(x1), . . . , t(xn)). 94

Since all the values x1, . . . , xn represent the same quantity, invariance with respect to all 95

natural transformations means also that the function f (x1, . . . , xn) should be invariance 96

with respect to all permutations. 97

Now, we are ready to describe the class of all invariant functions. 98

Definition 1. A continuous real-valued function f (x1, . . . , xn) of n real variables is called invari- 99

ant if it satisfies the following two conditions: 100

• for every continuous increasing function t(x), if we have y = f (x1, . . . , xn), then we have 101

t(y) = f (t(x1), . . . , t(xn)), and 102

• for every permutation π : {1, . . . , n} → {1, . . . , n} and for all possible values xi, we have

f (xπ(1), . . . , xπ(n)) = f (x1, . . . , xn).

There are known examples of invariant functions: namely, for each i from 1 to n, we 103

can take f (x1, . . . , xn) = x(i), where x(i) is the i-th of the values xj when we sort them in 104

the increasing order: 105

• x(1) is the smallest of n values x1, . . . , xn; 106

• x(2) is the second smallest of the values x1, . . . , xn, 107

• . . . , and 108

• x(n) is the largest of the values x1, . . . , xn. 109

Interestingly, there are the only invariant functions: 110

Proposition 1. A functions f (x1, . . . , xn) is invariant if and only it coincides with one of the 111

functions x(1), . . . , x(n). 112

Proof. It is easy to check that all the functions x(i) are invariant in the sense of the above 113

Definition. So, to complete our proof, it is sufficient to show that every invariant function is 114

equal to one of the functions x(i). 115

Indeed, let f (x1, . . . , xn) be an invariant function. Let us first find what is the value 116

f (1, . . . , n). Our claim is that this value must be equal to one of the values 1, . . . , n. Indeed, 117

if the value v def
= f (1, . . . , n) was different from these n numbers, then we could construct 118

a continuous strictly increasing function t(x) for which t(1) = 1, . . . , t(n) = n, and 119
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t(v) = v + ε for some small ε > 0. For example, we can form this function by using linear 120

interpolation between the corresponding points. In this case, the first part of the definition 121

of an invariant function would mean that t(v) = v + ε = f (1, . . . , n). However, since 122

v = f (1, . . . , n), we get v + ε = v and ε = 0 – while we know that ε > 0. 123

Thus, the value f (1, . . . , n) is indeed equal to one of the values 1, . . . , n. Let us denote 124

this value by i, then we get f (1, . . . , n) = i. 125

Now let us consider the case when x1 < x2 < . . . < xi < . . . < xn. In this case, we can 126

use linear interpolation to build a continuous strictly increasing piece-wise linear function 127

t(x) that maps 1 into x1, 2 into x2, . . . , and n into xn. For this transformation t(x), invariance 128

and the fact that f (1, . . . , n) = i imply that f (x1, . . . , xn) = xi. In this case, xi = x(i), so we 129

have f (x1, . . . , xn) = x(i). 130

If we have n values x1, . . . , xn which are all different, then we can perform a permuta-
tion π that places these values in an increasing order x(1) < . . . < x(n). For this permutation,

the second part of the definition of invariance implies that f (x1, . . . , xn) = f
(

x(1), . . . , x(n)
)

.

For the sorted values, we already know that f
(

x(1), . . . , x(n)
)
= x(i), so we conclude that

f (x1, . . . , xn) = x(i).

We have almost proved the proposition, the only thing that remains is to take care 131

of the case when some of the values x1, . . . , xn are equal to each other. In this case, we 132

can change the values a little bit – e.g., permute them so that they are in non-decreasing 133

order and then take Xi = xi + i · δ for some small δ > 0. For these changed values, we 134

have X1 < X2 < . . . < Xn, so f (X1, . . . , Xn) = X(i). Since the function f (x1, . . . , xn) is 135

continuous, in the limit δ → 0, we get the desired equality f (x1, . . . , xn) = x(i). 136

The proposition is proven. 137

2. What Is Ordered Weighted Averaging and How It Is Related to Deep Learning 138

2.1. Reminder 139

In the previous section, we have shown that a reasonable way to form a computational 140

process is to compose if of two types of stages: 141

• linear stages, when we compute a linear combination of the inputs

a0 + a1 · x1 + . . . + an · xn,

and 142

• nonlinear stages, when we compute the i-th value x(i) in the increasing order. 143

If we allow only one stage, this is all we can compute: linear combinations and x(i). This is 144

not enough, we can have more complex dependencies. So, we need more than one stage. 145

A natural question is: what if we use two stages? 146

2.2. What if we use two stages? 147

If we use two stages, then it does not make sense to have two linear stages one after 148

another: this way, we compute the composition of two linear functions, and since this 149

composition is also linear, this means that we can compute it in a single stage. Similarly, it 150

does not make sense to have two non-linear stages one after another: indeed, after the first 151

nonlinear stage, we get sorted values, so an additional sorting of these results will not add 152

any information. 153

So, we have two options: 154

• We can first perform a non-linear stage and compute the values x(i), and then perform
a linear stage, i.e., compute a lineqr combination of these values

a0 + a1 · x(1) + . . . + an · x(n).
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This is exactly Yager’s Ordered Weighted Averaing (OWA); see, e.g., [10]. To be more
precise, OWA is a particular case of this formula when a0 = 0, ai ≥ 0, and

a1 + . . . + an = 1.

• Alternatively, we can first perform a linear stage and then perform a nonlinear stage. 155

In this case, we get i-th element in the list of some linear combinations of inputs. As a 156

particular case, we get the main units of deep learning (see, e.g. [4]): the Rectified Lin- 157

ear Unit (ReLU) max(0, a0 + a1 · x1 + . . .+ an · xn), convolution (linear transformation), 158

and max-pooling, when we compute max(x1, . . . , xn). 159

If we consider only two stages, we can see the relation between OWA and deep 160

learning, but the results are clearly different. In both cases, not all functions can be 161

represented by these 2-stage computations. 162

To be able to compute any function with any given accuracy – i.e., to have a universal 163

approximation property – we therefore need to have more than two stages. And here things 164

become interesting. 165

2.3. What if we use many stages? 166

As we have mentioned, a linear stage (we will denote it by L) must be followed by a
nonlinear stage (we will denote it by NL), and vice versa. Depending on which stage we
start with, we have two possible sequences:

L → NL → L → NL . . .

or
NL → L → NL → L . . .

For both sequences, we can attach each NL stage to the previous L stage – as in deep
neural networks – and get a sequence

(L → NL) → (L → NL) . . .

or
NL → (L → NL) → (L → NL) . . .

This way, we get a general neural network – which is known to have a universal approxi- 167

mation property. 168

Alternatively, we can attach each L stage to the previous NL stage – as in OWA – and
get a sequence

L → (NL → L) → (NL → L) . . .

or
(NL → L) → (NL → L) . . .

In other words, the same computations as performed by a deep neural network can be 169

interpreted as several layers of OWA operations (and linear layers). 170

So, whatever we can compute with deep neural networks – and we can compute many 171

important things [4] – can also be interpreted as a multi-stage applications of OWA. In this 172

sense, OWA can be viewed as a natural predecessor of deep neural neural networks – and 173

Ron Yager can be viewed as a (grand)father of deep learning. 174

3. OWA and Decision Making Under Uncertainty 175

3.1. How to make a decision under interval uncertainty: reminder 176

In the ideal case, when we make a decision, we know the exact benefit ui from each of 177

the alternatives i. In this case, a reasonable idea is to select the alternative with the largest 178

benefit: ui → max. 179
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In practice, however, we usually do not know the exact values of the corresponding 180

benefits. At best, for each alternative i, we know the bounds ui and ui on the actual 181

(unknown) value of the future benefit ui. In other words, all we know about the actual 182

value ui is that this value belongs to the interval [ui, ui]. How can we make a decision in 183

this situation? 184

Reasonable assumptions on the rational decision making imply that we should select 185

an alternative for which the following combinations is the largest α · ui + (1 − α) · ui, where 186

the value α ∈ [0, 1] depends on the decision maker; see, e.g., [5,7,8]. This formula was first 187

proposed by an economist Leo Hurwicz – who later received a Nobel Prize for this – and 188

is thus known as Hurwicz optimism-pessimism criterion. This name comes from the fact 189

that: 190

• When α = 1, then the Hurwicz combination is simply equal to ui. This means that 191

when we make a decision, for each alternative, we only take into account the most 192

optimistic value ui. 193

• When α = 0, then the Hurwicz combination is simply equal to ui. This means that 194

when we make a decision, for each alternative, we only take into account the most 195

pessimistic value ui. 196

• When α is between 0 and 1, this means that take both optimistic and pessimistic values 197

into account. 198

3.2. Hurwicz criterion is a particular case of OWA 199

Let us show that the above-described Hurwicz criterion is actually a particular case of 200

OWA. 201

Indeed, how do we find the bounds ui and ui? We usually consider several possible 202

scenarios s = 1, 2, . . . , S, and for each alternative decision i and for each scenario s, we 203

compute the resulting gain uis. Then: 204

• we compute ui as max(ui1, ui2, . . . , uiS), and 205

• we compute ui as min(ui1, ui2, . . . , uiS). 206

In these terms, Hurwicz optimism-pessimism criterion means selecting the alternative with
the largest possible value of the quantity

α · max(ui1, ui2, . . . , uiS) + (1 − α) · min(ui1, ui2, . . . , uiS).

With respect to the inputs ui1, ui2, . . . , uiS, this formula takes exactly the OWA form

α · ui(S) + (1 − α) · ui(1).

(By the way, in this case, as in the original OWA, the weights α and 1 − α are both non- 207

negative, and their sum is 1.) 208
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