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Abstract In applications of fuzzy techniques to several practical problems – in par-
ticular, to the problem of predicting passenger flows in the airports – the most ef-
ficient membership function is a sine function; to be precise, a portion of a sine
function between the two zeros. In this paper, we provide a theoretical explanation
for this empirical success.

1 Formulation of the Problem

As all passengers know, passenger flow at the airports fluctuate widely hour by hour
and day and day. To avoid delays, it is important to predict the passenger flow as
accurately as possible. Many methods have been applied to make such predictions,
including machine learning; see, e.g., [3, 4, 5, 8, 12]. However, the resulting predic-
tions are still far from perfect.

Interestingly, human professionals can often make better predictions that even
the most complex models – because they use their experience and their knowledge.
It is therefore desirable to incorporate this knowledge into the predictions systems.
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This human expertise is usually formulated in terms of imprecise (“fuzzy”) words
from natural language such as “high flow”, “most probably”, etc. To capture such
knowledge, it is reasonable to use special techniques developed by Lotfi Zadeh to
use such knowledge – techniques of fuzzy logic (see, e.g., [1, 2, 6, 9, 10, 13]). In
this technique, for each imprecise statement like “the flow is high”, and for each
specific value x of the corresponding quantity (e.g., of the passenger flow), we ask
the expert to indicate, on a scale from 0 to 1, the degree to which this statement is
satisfied for this particular value x.

In the ideal case, we elicit, from the expert, the degree µ(x) corresponding to
each possible value x. The resulting function is known as the membership function.
Of course, for each quantity, there are many possible values – thousands, millions,
sometimes, infinitely many. We cannot ask thousands of questions to the experts.
So, a reasonable idea is to select a few-parametric family of functions, as a few
questions, and then find the values of the corresponding parameters that best fit the
answers.

In [11], one of the authors (JV) tried different families of membership functions
to see which one would lead to a better prediction of the passenger flow. It turns out
that the best results were obtained when he used the sine membership function (first
introduced in [7]), i.e., the function of the form

µ(x) = sin(b · (x+ϕ)) when − π

2
≤ b · (x+ϕ)≤ π

2
and µ(x) = 0 otherwise.

A natural question is: how can we explain this empirical fact?
In this paper, we provide a possible explanation for this result.

2 Our Explanation

What we want from a membership function. Usually, for each imprecise property
P like “medium size”, if the value x of the corresponding quantity is too small, this
quantity is clearly not medium size. Similarly, if the value of the quantity is too
large, this quantity is also clearly not medium size. Thus, for such properties, the
set of values x for which this property is to some extent satisfied – i.e., for which
the corresponding degree is positive µ(x) > 0 – is bounded both from below and
from above. In other words, there exists an interval [x,x] such that for all the values
x outside this interval, we have µ(x) = 0.

Also, for most imprecise properties, if two values x1 and x2 are close, then the
degrees µ(x1) and µ(x2) to which the given property is satisfied for these two val-
ues should also be close. For example, if someone with height 180 cm is tall, then
someone whose height is close to 180 cm should be considered – to a large ex-
tent – tall. In other words, when the different ∆x = x2 − x1 is small, the difference
µ(x+∆x)− µ(x) between the values of the membership function for close values
x and x+∆x of the corresponding quantity should also be small – and the order of
∆x. A natural precise formulation of this property is that the function µ(x) should
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be differentiable within the interval (x,x): indeed, for differentiable functions, for
small ∆x, we have µ(x+∆x)− µ(x) ≈ µ ′(x) ·∆x, where, as usual, µ ′(x) denotes
the derivative.

Differentiable functions are continuous, so at the endpoints x and x, we must have
µ(x) = µ(x) = 0.

How to describe a class of membership functions. It is well known that to describe
general vectors v in an n-dimensional vector space (also known as linear space), we
can select a basis – i.e., n linearly independent vectors e1, . . . ,xn – and use the fact
that every vector in this space can be represented as a linear combination of these
vectors: v = c1 · e1 + . . .+ cn · en. Functions also form a linear space: we can define
their sum as the function f (x)+g(x) and the product of a function f (x) and a number
c as c · f (x); the only difference is that the resulting space is infinite-dimensional.
Thus, to represent a general function, we can select a basis e1(x), . . . ,en(x), . . . in
the space of functions, and represent every function as a linear combination of the
basis functions:

f (x) = c1 · e1(x)+ . . .+ cn · en(x)+ . . .

For example, we can take e1(x) = 1, e2(x) = x, . . . , en(x) = xn−1; this will cor-
respond to Taylor series. Alternatively, we can take, as basis functions, sines and
cosines – this corresponds to Fourier transform, etc.

Since we are interested in differentiable functions, it makes sense to select dif-
ferentiable functions ei(x).

To describe a general function, we need to select the values of infinitely many
parameters c1, c2, . . . Of course, in a computer, at any given moment of time, we
can only store finitely many values. So, to represent a function in a computer, we
can only use finitely many parameters. In this case, approximating functions take
the form c1 ·e1(x)+ . . .+cn ·en(x). In other words, we consider the following set of
approximating functions – the set

{c1 · e1(x)+ . . .+ cn · en(x)} (1)

of all the functions of this type, where the functions ei(x) are fixed, and the coeffi-
cients c1, . . . ,cn can take any real values.

Shift-invariance. For many quantities like temperature or time, there is no fixed
starting point. If we select a different starting point – e.g., for time – which is a
moments earlier, then all numerical values x will be replaced by new values x+ a.
In mathematics, this transition x 7→ x+a is called a shift. After this shift, the original
basis functions ei(x) will take the form ei(x+a).

It is reasonable to require that the approximating family not change if we per-
form this shift, i.e., that the original set of approximating functions and the set of
approximating functions corresponding to the shifted basis should be the same:

{c1 · e1(x)+ . . .+ cn · en(x)}= {c1 · e1(x+a)+ . . .+ cn · en(x+a)}.
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Families that satisfy this property – i.e., that do no change (= are invariant) under
shift are known as shift-invariant.

Let us consider the simplest possible family. The larger the number of parame-
ters n, the more complex (and thus, time-consuming) data processing. So, to sim-
plify and speed up computations, it is reasonable to select a representation with the
smallest possible number of parameters, i.e., with the smallest possible value n.

So, we arrive at the following problem: find the smallest possible value n and
differentiable functions e1(x), . . . ,en(x) for which the set of linear combinations is
shift-invariant and for which this set includes a non-zero function f (x) for which
f (x) = f (x) = 0.

When is a family shift-invariant. Scale invariance of the family (1) means that if
we take any function f (x) from this family, then, for every a, the shifted function
f (x+a) should also belong to this family. In particular, since all the functions e1(x),
. . . , en(x) belong to the family (1), the shifted functions ei(x+a) should also belong
to this family. This means that for every i and for every a, there exist coefficients
ci j(a) depending on i and a for which

ei(x+a) = ci1(a) · e1(x)+ . . .+ cin(a) · en(x). (2)

We know that the functions ei(x) are differentiable. Let us show that the functions
ci j(a) are differentiable too. Indeed, if we select any n different values x1, . . . ,xn,
then to find n unknown values ci j(a), we get a system of n linear equations:

ei(x1 +a) = ci1(a) · e1(x1)+ . . .+ cin(a) · en(x1);

. . .

ei(xn +a) = ci1(a) · e1(x1)+ . . .+ cin(a) · en(xn).

It is known, from linear algebra, that the solution ci j(a) to this system is a linear
combination of the left-hand sides – namely, the product of the inverse matrix to the
matrix ∥ei(x j)∥ and the vector of the left-hand sides. Since the functions ei(x j +a)
are differentiable, their linear combinations ci j(a) are also differentiable.

Since all the functions ei(x) and ci j(a) are differentiable, we can differentiate
both sides of the equality (1) with respect to a, then we get the following:

e′i(x+a) = c′i1(a) · e1(x)+ . . .+ c′in(a) · en(x).

In particular, for a = 0, we get:

e′i(x) =Ci1 · e1(x)+ . . .+Cin · en(x), (3)

where we denoted Ci j
def
= c′i j(0).

Equations (3) for i = 1, . . . ,n form a system of linear differential equations with
constant coefficients. It is known that a general solution to this system of equations
is a linear combination of the terms xk · exp(λ · x), where λ is an eigenvalue of the
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matrix ∥Ci j∥ (which is, in general, a complex number), and the integer k is smaller
than the multiplicity of this eigenvalue. Thus, each function ei(x) is equal to such
a linear combination – and hence, all the functions from the family (1), which are
themselves linear combinations of the functions ei(x), also have this form.

What is the smallest possible shift-invariant family. In general, the smallest pos-
sible family corresponds to n = 1. In this case, according to the above description,
all the functions from the family (1) has the form C · exp(λ · x). However, we want
the desired function to be equal to 0 when x = x and when x = x, and the function
C · exp(λ · x) is not equal to 0 anywhere – unless, of course, C = 0, but in this case,
the function is just everywhere equal to 0.

So, we cannot have n = 1. Let us therefore consider the next simplest case n = 2.
In this case, we can have:

• either one eigenvalue λ – in which case it must be a real number,
• or two different eigenvalues λ1 ̸= λ2 – in which case they can be either real or

complex-valued.

In the first case, we conclude that a general function from the family (1) has the
form C1 · exp(λ · x)+C2 · x · exp(λ · x), i.e., the form

(C1 +C2 · x) · exp(λ · x).

In this case, this function is equal to 0 if C1 +C2 · x = 0, i.e., only at one point
x = −C1/C2, while we want the desired membership function to be equal to 0 at
two different points x and x. Thus, this case is not possible.

Let us now consider the case when we have two different real eigenvalues λ1 and
λ2. In this case, a general function from the family (1) has the form

f (x) =C1 · exp(λ1 · x)+C2 · exp(λ2 · x).

For this function, the equation f (x) = 0 takes the form

C1 · exp(λ1 · x)+C2 · exp(λ2 · x) = 0.

If we move the first term in the left to the right-hand side and divide both sides by
C2 · exp(λ1 · x), we get

exp((λ2 −λ1) · x) =−C1/C2.

By taking logarithm of both sides and dividing the resulting equality by λ2 −λ1, we
get

x =
ln(−C1/C2)

λ1 −λ1
.

Thus, the function f (x) is equal to 0 only at one point, while we are looking for a
function that is equal to 0 at two different points.

So, for n = 2, the only remaining case is when both eigenvalues λ1 and λ2 are
complex numbers, with non-zero imaginary parts. It is known that if λ = a+ b · i,
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where i def
=

√
−1, is an eigenvalue of a real-valued matrix, then its complex conju-

gate λ ∗ def
= a− b · i is also an eigenvalue of this matrix. Thus, in this case, the two

eigenvalues are complex conjugates to each other, i.e.., λ1 = a+b · i and λ2 = a−b · i
for some real numbers a and b. In this case, the general form of a function from the
family (1) has the form

C1 · exp((a+b · i) · x)+C2 · exp((a−b · i)] · x). (4)

In general,
exp((a+b · i) · x) = exp(a · x) · exp(b · i · x).

Since exp(i · z) = cos(z)+ i · sin(z), we get

f (x) = exp(a · x) · (A · cos(b · x)+B · sin(b · x)),

where A def
= C1 +C2 and B def

= C1 −C2. The trigonometric part can be equivalently
described as C · sin(b · (x+ϕ)) for some value ϕ , where C def

=
√

A2 +B2.

Conclusion. So, we conclude all the functions from the corresponding family –
including the desired membership function – have the form

f (x) =C · exp(a · x) · sin(b · (x+ϕ). (5)

For a = 0, we get exactly the desired form of the membership function – indeed,
in this case, the fact that the maximum value of the membership function should be
equal to 1 implies that C = 1.

In the general case, when the value a may be different from 0, we get a more
general expression – which may be useful in some applications.
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