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Abstract In the traditional fuzzy logic, an expert’s degree of certainty in a statement
is described by a single number from the interval [0,1]. However, there are situations
when a single number is not sufficient: e.g., a situation when we know nothing and
a situation in which we have a lot of arguments for a given statement and an equal
number of arguments against it are both described by the same number 0.5. Several
techniques have been proposed to distinguish between such situations. The most
widely used is interval-valued technique, where we allow the expert to describe
his/her degree of certainty by a subinterval of the interval [0,1]. Eliciting an interval-
valued degree is straightforward. On the other hand, in many practical application,
another technique has been useful: the technique complex-valued fuzzy degrees. For
this technique, there is no direct way to elicit such degrees. In this paper, we explain
a reasonable natural approach to such an elicitation.

1 Formulation of the Problem

Need for fuzzy logic: a brief reminder. In many cases, people do not have 100%
certainty in their statements. To describe such uncertainty in human reasoning, Lotfi
Zadeh proposed to describe a person’s degree of certainty by a number from the
interval [0,1], where:
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• 1 corresponds to absolute cerainty in a statement,
• 0 corresponds to absolute certainty in its negation, and
• intermediate values between 0 and 1 correspond to intermediate degrees of cer-

tainty.

This is one of the main ideas behind fuzzy logic; see, e.g., [3, 6, 10, 12, 13, 15].

Need to go beyond traditional fuzzy logic: reminder. It is known that a single
degree does not always provide an adequate description of a person’s uncertainty.
An example is when we have two scenarios:

1. we do not know anything about a statement S, and
2. we have equal number of arguments for and against the statement S.

In both cases, we have the same number of reasons to believe in S and in its negation
¬S, so the natural idea is to assign 0.5 as the degree of certainty in the statement.
However, these two cases are completely different.

A possible solution to this problem: interval-valued degrees. One way to distin-
guish these two scenarios is to allow the person to describe his/her degree of cer-
tainty not only by a number, but also by an interval of possible values; see, e.g., [10].

• In a situation when a person knows nothing about the statement, he/she does not
have any reason to select one of the degrees, so a natural idea is to return all
possible degrees – i.e., the whole interval [0,1].

• In the second case, when a person has an equal number of arguments for and
against, it is reasonable to describe the person’s certainty by the midpoint 0.5 of
the interval [0,1].

Alternative solution: complex-valued degrees. An alternative approach – which
also led to useful applications – is to use complex-valued degrees; see, e.g., [1, 4,
5, 7, 8, 9, 11, 14]. Many operations of fuzzy logic can be naturally extended to
complex numbers zi:

• we can extend the usual negation operation f¬(a) = 1−a to f¬(z) = 1− z;
• we can extend one of the most widely used “and”-operations (t-norms)

f&(a1,a2) = a ·b to f&(z1,z2) = z2 · z2; and
• we can extend one of the most widely used “or”-operations (t-conorms)

f∨(a1,a2) = a1 +a2 −a1 ·a2 to f&(z1,z2) = z1 + z2 − z2 · z2.

Why not min? In the above description, we use the product “and”-operation
f&(a1,a2) = a1 · a2. What about an even more popular min “and”-operation
min(a1,a2)? Minimum is not an analytical function and thus, it cannot be directly
extended to complex numbers. However, we know that function min(a1,a2) can be
represented a limit of analytical functions, e.g., as

min(a1,a2) = lim
n→∞

(an
1 +an

2)
−1/n.

So why not try a similar limit limn→∞(z−n
1 + z−n

2 )−1/n. for complex values zi?
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This actually works when |z1| ≠ |z2|: in this case, this limit is equal to the value zi
whose modulus is the smaller of the two. However, when |z1|= |z2|, this sequence,
in general, has no limit. For example, when z1 = 1 and z2 =−1:

• for even n, we get (z−n
1 + z−n

2 )−1/n = 1, while
• for odd n, we get (z−n

1 + z−n
2 )−1/n = ∞.

But how can we elicit these complex-valued degrees? Eliciting interval-valued
degrees is straightforward. If we ask people to estimate their degree of certainty in
a given statement by an interval, most of them will easily give us a interval.

However, the same cannot be said for the case of complex numbers. The problem
with using complex numbers is that people don’t remember them, and, even if they
do, don’t have good intuition about complex numbers. As a result, eliciting complex-
valued degrees is a challenge.

In this paper, we describe a natural approach for eliciting such degrees.

2 Analysis of the Problem

What is a natural real-valued analogue of a complex-valued degree?

• As we have mentioned, many people do not have a good intuition about complex-
valued degrees z.

• On the other hand, most people can naturally describe their certainty by a real
number a.

Thus, for each complex number z that describes a person’s actual degree of certainty,
there is a corresponding real number that this person will provide if asked about
his/her level of certainty. Let us denote this corresponding real number by a = f (z).

What are the natural properties of the corresponding function f (z)?

• First, if the complex-valued degree z is actually a real number from the interval
[0,1], then it is reasonable to assume that this same real number z ∈ [0,1] will
describe the person’s real-valued degree of certainty, i.e., we should have f (z) =
z.

• Second, small changes in z should not cause big changes in f (z), i.e., the function
f (z) must be continuous.

• The third requirement concerns “and”-operations. If we have two statements S1
and S2 with complex-valued degrees z1 and z2, then we can estimate the real-
valued degree of certainty in a combined statement S1 &S2 in two different ways:

– we can apply the “and”-operation and then transform the result z1 · z2 into real
numbers, thus returning f (z1 · z2);

– alternatively, we can first transform both degree z1 and z2 into real numbers,
resulting in the values f (z1) and f (z2), and then apply an “and”-operation that
would produce f (z1) · f (z2).
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It is reasonable to require that the resulting degree should not depend on how we
estimated it, i.e., that we should have f (z1 · z2) = f (z1) · f (z2).

It turns out that these properties uniquely determine the desired function f (z).

Proposition 1. For any continuous function from complex numbers to real numbers,
the following two conditions are equivalent:

1. for every real number z ∈ [0,1], we have f (z) = z, and for every two complex
numbers z1 and z2, we have f (z1 · z2) = f (z1) · f (z2);

2. we have f (z)= |z|, i.e., f (z) is equal to the absolute value (modulus) of a complex
number z = a+b · i: |z|=

√
a2 +b2.

Proof.

1◦. It is easy to see that the function f (z) = |z| satisfies the first condition. So, to
complete the proof, it is sufficient to prove that every function f (z) that satisfies the
first condition is equal to the modulus.

2◦. Let us first prove that f (z) = z for all non-negative real numbers z.

Indeed, for real numbers z ∈ [0,1] this is postulated in the first condition. For a
real number z > 1, the multiplicative property – which is part of the first condition
– implies that f (z) · f (1/z) = f (1). Here, 1/z < 1, so, due to the first condition,
we have f (1/z) = 1/z and f (1) = 1. Thus, the multiplicative property implies that
f (z) · (1/z) = 1. Multiplying both sides of this equality by z, we get the desired
equality f (z) = z.

3◦. It is known that every complex number z can be represented as

z = ρ · exp(α · i),

where ρ = |z| is a non-negative real number, and α is also a real number, which can
be also chosen to be non-negative (actually, we can always choose α ∈ [0,2π)). Due
to the multiplicative property, we have f (z) = f (ρ) · f (exp(α · i)). From Part 2 of
this proof, we know that f (ρ) = ρ = |z|. Thus, to complete our proof, it is sufficient
to prove that f (exp(α · i)) = 1 for all α .

We will prove it in three steps.

3.1◦. First, for α = 2π · (1/n), the product of n such numbers is equal to 1:

exp
(

2π · 1
n
· i
)
· . . . · exp

(
2π · 1

n
· i
)
= exp(2π · i) = 1.

Thus, the multiplicative property implies that

f
(

exp
(

2π · 1
n
· i
))

· . . . · f
(

exp
(

2π · 1
n
· i
))

= f (1) = 1,

i.e.,
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f
(

exp
(

2π · 1
n
· i
)))n

= 1.

Since all the values f (z) are non-negative real numbers, we thus get

f
(

exp
(

2π · 1
n
· i
))

= 1.

3.2◦. Let us now consider the case when α = 2π · (m/n) for some rational number
m/n. In this case, we have

exp
(

2π · m
n
· i
)
= exp

(
2π · 1

n
· i
)
· . . . · exp

(
2π · 1

n
· i
)

(m times).

Thus, the multiplicative property implies that

f
(

exp
(

2π · m
n
· i
))

= f
(

exp
(

2π · 1
n
· i
))

· . . . · f
(

exp
(

2π · 1
n
· i
))

.

According to Part 3.1 of this proof, all the values in the right-hand side are equal to
1, so we conclude that

f
(

exp
(

2π · m
n
· i
))

= 1.

3.3◦. Every non-negative real number α can be represented as 2π ·β , where β
def
=

α/(2π). Each non-negative real number β can be represented as a limit of rational
numbers βk – e.g., numbers obtained if we take, in the decimal representation of
the number β , the first k digits after the decimal point: βk → β . Due to Part 3.2 of
this proof, for each k, we have f (exp(2π · βk · i)) = 1. Since the function f (z) is
continuous, we can thus conclude that in the limit βk → β , we also have f (exp(2π ·
β · i)) = 1, i.e., f (exp(α · i)) = 1.

The statement of Part 3 is proven, and thus, the Proposition is proven too.

So how can we elicit complex-valued degrees: analysis of the problem. As we
have mentioned, most people cannot provide a complex-valued degree z describ-
ing their degree of certainty, but what they can provide is the real value f (z) = |z|
corresponding to this degree.

What if we collect the real value d+
def
= |z| corresponding to the original statement

and the real value d−
def
= |1− z| corresponding to the negation of this statement? For

a general complex number z = a+b · i, we have 1−z = (1−a)−b · i. Thus, we have

d+2 = a2 +b2 (1)

and
d−2 = (1−a)2 +b2 = 1−2a+12 +b2. (2)

Subtracting (2) from (1) we get:
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d+2 −d−2 = 2a−1,

thus

a =
d+2 −d−2 +1

2
. (3)

Substituting this value a into the formula (1), we get

b2 = d2
+−

(
d2
+−d2

−+1
2

)2

= d2
+−

(d2
+−d2

−)
2 +2d2

+−2d2
−+1

4
=

4d2
+− (d2

+−d2
−)

2 −2d2
++2d2

−−1
4

=
2d2

++2d2
−− (d2

+−d2
−)

2 −1
4

.

Thus,

b =±1
2
·
√

2(d+2 +d−2)− (d+2 −d−2)
2 −1 (4)

Thus, we arrive at the following way to elicit complex-valued fuzzy degrees.

3 So How to Elicit Complex-Valued Fuzzy Degrees: Algorithm
and Discussion

Algorithm. In order to estimate the person’s complex-values degree of certainty in
a given statement S, we ask a person to provide:

• a real-valued estimate d+ of this person’s certainty in the given statement S, and
• a real-valued estimate d− of this person’s certainty in its negation ¬S.

After that, we compute the values a and b by using formulas (3) and (4), and return
the complex-valued degree z = a+b · i.

When is such reconstruction possible? If the values d+ and d− come for a
complex-valued degree of certainty, then the above algorithm reconstructs the orig-
inal complex-valued degree. But, realistically, complex-valued degrees are an ap-
proximate description of uncertainty – just like any other uncertainty formalism.
So, a natural question is: if we have two numbers d+ and d− form the interval [0,1],
when will the above algorithm lead to a complex number?

In general, the triangle inequality implies that |z|+ |1−z| ≥ 1. Thus, for the above
algorithm to work, we need to have d++ d− ≥ 1. It turns out that this is the only
condition: once this inequality holds, the above algorithm works.

Proposition 2. For every two numbers d−,d+ ∈ [0,1] for which d++d− ≥ 1, there
exists a complex number z = a+b · i for which |z|= d+, |1−z|= d−, and 0 ≤ a ≤ 1.

Proof.
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1◦. Let us first prove that when the condition d++d− ≥ 1 is satisfied, then the value
a described by the formula (3) is located between 0 and 1.

1.1◦. Since d2
− ≥ 0, from the formula (3), we conclude that

a ≤
d2
++1

2
.

Since d2
+ ≤ 1, we get

a ≤ 1+1
2

= 1.

1.2◦. Since d2
− ≤ 1, we have d2

+−d2
−+1≥ d2

+−1+1= d2
+ ≥ 0, thus, by the formula

(3), we have a ≥ 0.

2◦. Let us now prove that the above expression for b2, namely, the difference

d2
+−

(
d2
+−d2

−+1
2

)2

,

is always non-negative, and thus, we can always extract a square root from this
expression and get a real value b. Indeed, the non-negativity of the above difference
is equivalent to

d2
+ ≥

(
d2
+−d2

−+1
2

)2

.

On both sides of this inequality, we have squares of non-negative numbers. For non-
negative values, the function x2 is strictly increasing, so the desired inequality is
equivalent to a similar inequality between the original numbers:

d+ ≥
d2
+−d2

−+1
2

.

Multiplying both sides of this inequality by 2, we get 2d+ ≥ d2
+−d2

−+1. Moving d2
−

to the left-hand side and 2d+ to the right-hand side, we get an equivalent inequality
d2
− ≥ d2

+ − 2d+ + 1. The right-hand side of this inequality is a full square, so the
desired inequality takes the form d2

− ≥ (1−d+)2. This inequality follows from the
fact that d++d− ≥ 1, thus d− ≥ 1−d+ ≥ 0. Squaring both sides of this inequality,
we indeed get d2

− ≥ (1−d+)2, and thus, we get the desired inequality

d2
+−

(
d2
+−d2

−+1
2

)2

≥ 0.

The proposition is proven.

How is this related to interval-valued degrees? In this approach, the degrees d+
and d− of the statements S and ¬S satisfy the inequality d+ + d− ≥ 1. From this
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viewpoint, the values d+ and d− can be viewed as similar to upper endpoints of the
intervals.

Indeed, if we estimate the degree of certainty in a statement S by an interval [a,a],
then a natural interval-valued degree for ¬S would be the interval formed by all the
values 1−a when a ∈ [a,a], i.e., the interval [1−a,1−a]. For the upper endpoints
of these two intervals, we get a+(1− a) = 1+(a− a). Since a ≥ a, this sum is
always greater than or equal to 1.

In this case, d+ = a and d− = 1− a. So, if we know d+ and d−, we can find
a = d+ and a = 1−d−. Thus, a complex-valued degree z can be represented by an
interval [1−|1− z|, |z|].

Vice versa, if we know an interval-valued degree [a,a], then we can find d+ = a
and d− = 1− a, and, by applying the formulas (3) and (4), get the corresponding
complex-valued degree z = a+b · i, where

a =
a2 − (1−a)2 +1

2
=

a2 −1+2a−a2

2
= a+

a2 −a2

2

and

b2 = d2
+−a2 = a2 −

(
a+

a2 −a2

2

)2

=

a2 −

(
a2 +a · (a2 −a2)+

(
a2 −a2

2

)2
)

=

(a2 −a2)−a · (a2 −a2)−
(

a2 −a2

2

)2

=

(a2 −a2) ·
(

1−a− a2 −a2

4

)
.

Comment. If instead, we use lower endpoints as a description of interval-valued
uncertainty, we will get d++ d− ≤ 1, i.e., in effect, the case of intuitionistic fuzzy
degrees; see, e.g., [2].

Example.

• The above argument leads to a conclusion that in the scenario when we know
nothing about a statement, we should take d+ = d− = 1. In this case, the formula
(3) implies that a = 0.5, and the formula (4) implies that b = ±0.5. Thus, this
scenario corresponds to the complex-valued degree

z = 0.5±
√

3
2

· i.

• On the other hand, in the second scenario, when we have d+ = d− = 0.5, we get
z = 0.5 – a different complex-valued degree.
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