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Abstract—Entropy is a natural measure of randomness. It
progresses from its smallest possible value 0 – when we have
a deterministic case in which one alternative i occurs with
probability 1 (pi = 1), to the largest possible value which is
attained at a uniform distribution p1 = . . . = pn = 1/n.
Intuitively, both in the deterministic case and in the uniform
distribution case, there is not much variety in the distribution,
while in the intermediate cases, when we have several different
values pi, there is a strong variety. Entropy does not seem to
capture this notion of variety. In this paper, we discuss how we
can describe this intuitive notion.

Index Terms—Entropy, probability distribution, variety

I. VARIETY: AN INTUITIVE NOTION

For probability distributions, we have an intuitive under-
stand that some probability distributions are “more random”
than the others. This intuitive notion of degree of random-
ness is captured by the formal definition of an entropy of
a probability distribution; see, e.g., [1]–[6]. Entropy can be
defined as an average number of binary (“yes”-“no”) questions
that one needs to ask to determine the exact alternative. It is
known that for a distribution in which an alternative i appears
with probability pi, this average number of questions can be
described by Shannon’s formula

S = −
n∑

i=1

pi · log2(pi).

For a continuous probability distribution with a probability
density ρ(x), we can similarly ask how many binary questions
are needed, on average, to determine x with a given accuracy
ε. Asymptotically, when ε → 0, this number of questions can
be described as S − log2(2ε), where

S = −
∫

ρ(x) · log(ρ(x)) dx.

For discrete case, entropy progresses:
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• from its smallest possible value 0 – when we have a
deterministic case in which one alternative i occurs with
probability 1 (pi = 1),

• to the largest possible value which is attained at a uniform
distribution

p1 = . . . = pn =
1

n
.

Intuitively:
• both in the deterministic case and in the uniform distri-

bution case, there is not much variety in the distribution,
while

• in the intermediate cases, when we have several different
values pi, there is a strong variety.

Entropy does not seem to capture this notion of variety. In this
paper, we discuss how we can describe this intuitive notion.

II. MAIN IDEA BEHIND OUR APPROACH

The value of entropy only depends on the values of the
probability and does not depend on which alternatives have
different probabilities:

• if we apply a permutation

π : {1, 2, . . . , n} → {1, 2, . . . , n}

to the alternatives,
• then the resulting probability distribution p′i

def
= pπ(i) will

have exactly the same entropy as the original probability
distribution pi.

So, when analyzing related properties of randomness, we can
assume that we only know the values p1, . . . , pn, but we do
not know which alternative has which probability.

In general, because of the possible permutations, we can
have different distributions with the same set of values
{p1, . . . , pn}. In other words:

• once we fix the set of values {p1, . . . , pn},
• we get, in general, not a single distribution but rather a

variety of different distributions.
Let us see how big this variety is in different cases.

Let us first consider the deterministic case, in which the all
the values pi are equal to 0 except for one value which is
equal to 1. In this case, we have N = n possible probability
distributions:



• the first one in which alternative 1 occurs with probabil-
ity 1,

• the second one in which alternative 2 occurs with prob-
ability 1, etc.

In the case of a uniform distribution, all the values of pi are
equal, so no matter what permutations we apply, we end up
with the exact same uniform distribution. Thus, in this case,
the variety consists of a single probability distribution: N = 1.

In the general case, when all n probabilities pi are different,
we get as many probability distributions as we have permuta-
tions, i.e, N = n! different distributions.

We see that in this sense, deterministic and uniform cases
indeed have low variety, while the general case has a much
larger variety. It is therefore reasonable to consider the corre-
sponding value N as the main idea behind the formalization
of the intuitive notion of variety.

III. HOW TO MEASURE VARIETY: CASE OF DISCRETE
DISTRIBUTIONS

In line with the above definition of entropy, it is reasonable
to describe the variety as the smallest number of binary
questions which are needed to uniquely determine the actual
distribution.

After each binary question, we can have 2 possible answers.
So:

• if we ask q binary questions,
• then, in principle, we can have 2q possible results.

Thus:

• if we know that our (unknown) distribution is one of
N distributions, and we want to uniquely pinpoint the
distribution after all these questions,

• then we must have 2q ≥ N .

In this case, the smallest number of questions is the smallest
integer q that is ≥ log2(N). Thus, log2(N) is the natural
measure of variety in the discrete case.

• For the deterministic case, N = 1, so the variety is
log2(1) = 0.

• In the uniform case, we have q = log2(n).
• In the general case, we have q = log(n!).

To simplify computations, we can use the well-known Stirling
formula n! ∼ (n/e)n ·

√
2π · n, hence

q = log2(n!) ≈ n · log2(n).

It is worth mentioning that:

• since the variety only depends on the set of probability
values {p1, . . . , pn} and not on their order,

• we can, without losing generality, assume that the values
pi are listed in increasing order

p1 ≤ p2 ≤ . . . ≤ pn.

IV. HOW TO MEASURE VARIETY: CASE OF CONTINUOUS
DISTRIBUTIONS

Without losing generality, we can similarly assume that the
probability density ρ(x) is an increasing function of x.

Similarly to entropy, a natural way to go from the discrete
case to the continuous case is to take into account that in
reality, we can only determine both

• the value of the variable x and
• the probability p

with a certain accuracy.
Once we fix the accuracy ε of measuring x, then, within

this accuracy, we have only finitely many possible values of
x: a value xi covers the whole interval [xi − ε, xi + ε], so we
only need values:

• x0 – which covers

[xi − ε, xi + ε],

• x1 = x0 + 2ε – which covers

[x1 − ε, x1 + ε] = [x0 + ε, x0 + 3ε],

• x2 = x0 + 4ε,
• etc.

As a result, we get a discrete problem which we already know
how to handle. When the accuracy ε tends to 0, the discrete
problem tends to the original continuous one.

• For entropy, it was sufficient to take into account that x
cannot be measured exactly.

• For variety, since we need to distinguish between differ-
ent and equal values of probability pi, we must also take
into account that the probabilities can only be measured
with a certain accuracy.

So, let us fix the accuracy ε which which we measure x, and
the accuracy δ with which we measure probability. Once we
fix ε, we get values

x0, x1 = x0 + 2ε, x2 = x0 + 4ε, . . . ,

xi = x0 + i · (2ε), . . .

Each of these values xi covers an interval [xi − ε, xi + ε],
so for the probability distribution with the density ρ(x), the
probability pi of xi is equal to

pi =

∫ xi+ε

xi−ε

ρ(x) dx ≈ ρ(xi) · (2ε).

We can only determine probabilities with accuracy δ. This
means, in effect, that we divide the interval [0, 1] of possible
values of probability into intervals:

• p0 = [0, 2δ] (probabilities which are approximately equal
to δ),

• p1 = [2δ, 4δ] (probabilities which are approximately
equal to 3δ),

• . . . ,
• pj = [j · (2δ), (j + 1) · (2δ)] (probabilities which are

approximately equal to (j + 1/2) · (2δ)),
• . . . ,



• [1 − 2δ, 1] (probabilities which are approximately equal
to 1− δ),

and we consider events pi for which the probabilities fall into
the same probability interval as having (within this accuracy)
the same probability.

Let nj denote the number of events for which the cor-
responding probability pi ≈ ρ(xi) · (2ε) falls within the
j-th probability interval pj . Then, the number of possible
permutations is equal to the number of ways to subdivide the
overall number of n = n1 + n2 + . . . values into groups of
n1, n2, etc.

• The total number C1 of ways to choose n1 elements out
of n is well-known in combinatorics, and is equal to(

n

n1

)
=

n!

(n1)! · (n− n1)!
.

• After we choose these n1 elements, we have a problem
in choosing n2 out of the remaining n−n1 elements; so
for every selection of n1 elements we have

C2 =

(
n− n1

n2

)
possibilities to choose these n2 elements. Therefore, in
order to get the total number of selections of n1 elements
and n2 elements, we must multiply C2 by C1.

Adding selections of n3, n4, . . . , we get finally the following
formula for N :

N = C1 · C2 · . . . · Cn−1 =

n!

n1! · (n− n1)!
· (n− n1)!

n2! · (n− n1 − n2)!
· . . . =

n!

n1! · n2! · . . .
Thus, the resulting degree of variety q is equal to

q = log2(N) = log(n)− log2(n1!)− log2(n2!)− . . .

Since log2(n!) ≈ n · log(n), we conclude that

q = n · log(n)− n1 · log2(n1)− n2 · log2(n2)− . . . ,

where the total number of points n ≈ L/(2ε) only depends
on the width L of the interval on which the probability
distribution is located but not on the distribution itself.

How big are the values nj? By definition, nj is the number
of values xi for which

j · (2δ) ≤ pi = ρ(xi) · (2ε) ≤ (j + 1) · (2δ),

i.e., for which

j · δ
ε
≤ ρ(xi) ≤ (j + 1) · δ

ε
.

Since ρ(x) is an increasing function of x, this is equivalent to
x(j) ≤ xi ≤ x(j+1), where

x(j) def
= ρ−1

(
j · δ

ε

)

and ρ−1 denotes the inverse function to ρ(x) – i.e., in other
words,

ρ(x(j)) = j · δ
ε
.

The difference ∆x(j) def
= x(j+1) − x(j) between the two

consequent threshold values of x can be determined from the
fact that asymptotically,

ρ(x(j+1)) = ρ(x(j) +∆x(j)) ≈ ρ(x(j)) + ρ′(x(j)) ·∆x(j),

where ρ′(x) denote the derivative of the density function. So
from

ρ(x(j)) = j · δ
ε

and
ρ(x(j+1)) = (j + 1) · δ

ε
,

we conclude that

∆x(j) ≈ δ

ε
· 1

ρ′(x(j))
. (1)

On this interval, we have nj ≈ ∆x(j)/(2ε) values xi, so

nj ≈
δ

2ε2
· 1

ρ′(x(j))
.

Hence,
q = n · log2(n)−

∑
nj · log2(nj)

can be described as q = n · log2(n) +
∑

a(xj), where

a(x(j))
def
= − δ

2ε2
· 1

ρ′(x(j))
· log2

(
δ

2ε2
· 1

ρ′(x(j))

)
. (2)

When accuracies tend to 0, this sum gets close to an integral.
Since for every function f(x), the integral is approximately
equal to its integral sum∫

f(x) dx ≈
∑

f(x(j)) ·∆x(j),

and the smaller ε and δ, the closer the integral sum to
the integral, we conclude that the sum

∑
a(x(j)) can be

approximately described as∑
b(x(j)) ·∆x(j) ≈

∫
b(x) dx,

where b(x(j))
def
=

a(x(j))

∆x(j)
. From (1) and (2), we conclude that

b(x(j)) = − 1

2ε
· log2

(
δ

2ε2
· 1

ρ′(x(j))

)
,

hence

q ≈ n · log2(n)−
∫

1

2ε
· log2

(
δ

2ε2
· 1

ρ′(x)

)
dx.

Since the logarithm of the product is equal to the sum of the
logarithms, we can see that

q = n · log2(n)−
1

2ε
·
(∫

log2

(
δ

2ε2

)
dx+

∫
log2

(
1

ρ′(x)

)
dx

)
.



Thus, asymptotically, the value q can be determined once we
know the value

Q
def
=

∫
log2(ρ

′(x)) dx.

In the general case, when the function ρ(x) is not necessarily
increasing, it can be decreasing as well, so we get

Q
def
=

∫
log2(|ρ′(x)|) dx.

V. CONCLUSION

For a continuous probability distribution, the above measure
of variety can be computed as follows:

Q
def
=

∫
log2(|ρ′(x)|) dx.

• For the (almost) deterministic case, when

ρ(x) ≈ 1

ε

on a narrow interval of width ε, we have

ρ′(x) ≈ ρ(x)

ε
≈ 1

ε2
,

so Q ≈ ε · log2(ε−2) ≈ 0.
• For a uniform distribution ρ(x) = const, we have

ρ′(x) = 0, hence Q = −∞.
• For non-uniform distributions in which |ρ′(x)| > 0, as

expected, we get higher variety.
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