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Abstract

In this paper, we use AI ideas to provide a theoretical explanation
for semi-empirical formulas that describe how the pavement strength
changes with time, and how we can predict the pavement lifetime.
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1 Formulation of the Problem

Formulation of the problem. In many road segments, one or more pavement
layers are stabilized by adding cement, lime, fly ash, and other additives. For
example, cement-based concrete is sometimes used as the top layer, cement
or lime is often added to the underlying soil, etc. Cement and other additives
takes some time to gain strength, so at first, the pavement strength increases
with time. Once the desired strength is reached, the strength starts decreasing.
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This decrease is caused both by the traffic and by the freeze-thaw and wet-dry
cycles. As a result of this decrease, the pavement has a finite lifetime, after
which the pavement has to be rehabilitated.

There are semi-empirical formulas that describe both how the pavement
strength changes with time and how we can predict the pavement lifetime;
these formulas are summarized and tested in [8]. The problem is that these
formulas do not have a theoretical explanation, and without such an explana-
tion, practitioners are somewhat reluctant to use them – since there have been
many cases when an empirical formula does not work well in situations which
are somewhat different from situations from which this formula was derived.
To enhance the reliability of these formulas, it is therefore desirable to come
up with theoretical explanations.

What we do in this paper. In this paper, we describe these formulas, and
show that AI ideas can help to provide theoretical explanations for most of
these formulas.

2 Main Idea Behind Our Explanations

Need for AI techniques. In some cases, we have theoretically justified for-
mulas for predicting the future state of a system. A classical example of such a
case is celestial mechanics, where Newton’s equations enable us to accurately
predict the position of planets and other celestial bodies literally hundreds of
years ahead; see, e.g., [4, 15]. However, in many other practical situations, we
do not have such formulas, and pavement engineering is one such situation.

In many such cases, however, we have experts who have been successful in
solving the corresponding problems: we have expert medical doctors who are
very good in diagnosing and curing diseases, we have expert pilots who are
very good in controlling complex planes, we have expert engineers who are very
good in designing and maintaining durable road pavements, etc. These experts
are perfectly willing to share their expertise, but the problem is that they can
rarely describe their knowledge and their skills in precise numerical form. It
is therefore necessary to be able to translate their non-numerical statements
into precise numerical formulas. Such a translation is one of the main tasks of
broadly understood Artificial Intelligence.

AI techniques that we use in this paper. There are many different types
of AI techniques. For example, sometimes, experts can provide rules that use
imprecise (“fuzzy”) words from natural language like “small”. To translate
such rules into precise numerical dependencies, Lotfi Zadeh invented a special
methodology that he called fuzzy; see, e.g., [2, 7, 9, 11, 12, 17].

In some cases, experts can show, on real and/or simulated situations, how
they will react. In this case, it is necessary to come up with a general algorithm
based on these specific examples. Designing an algorithm based on examples
is known as machine learning; see, e.g., [3, 5]. At present, the most widely
used machine learning techniques is neural networks, in particular, deep neural
networks; see, e.g., [5].
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Both fuzzy and neural techniques have been successfully used in many
application areas, including pavement engineering. However, in pavement engi-
neering – and in many other application areas – there is an important part of
expert knowledge that is not easy to capture by fuzzy or neural techniques:
the idea of similarity and symmetry. Indeed, in general, how do we react to
a new situation? How does a medical doctor react to a new patient? A usual
way to do it is to look for similar situations form our past experiences in which
we acted successfully, and to try a similar reaction in this case as well.

Similarities are, in effect, the basis of all the decisions that we make. For
example, how do we conclude that Ohm’s law V = I · R relating voltage V ,
current I, and resistance R will work in a new situation? Because it worked in
many similar situations in the past. How do we know that predictions of planet
positions based on Newton’s equations will turn out to be correct hundred
years from now? Because similar predictions worked successfully in the past.
Physicists realize that similarities – which they call symmetries or invariances
– are very important: for example, in modern physics, many new theories are
formulated not in terms of differential equations (as in Newton’s time), but by
explicitly describing the corresponding symmetries; see, e.g., [4, 15].

In line with this, in this paper, we will use experts’ opinion about the
corresponding invariances, and we will use techniques similar to the ones used
in physics to translate these ideas into numerical dependencies.

3 The Newly Built or Newly Rehabilitated
Road: How Strength Increases with Time

Empirical formula. For the case of a newly built or a newly rehabilitated
road, the initial increase in strength S with time t is described by the following
formula:

S = S0 · p

1−
1

1− t− t0
p2

1 (1)

for some constants S0, p1, t0, and p2.
If we take the logarithm of both sides, this formula can be equivalently

reformulated into a somewhat simpler form:

ln(S) =
a+ b · t
1 + c · t

, (2)

for some constants a, b, and c.

Our explanation: first approximation. The above formula describes how
the strength S depends on time t. The numerical value of time depends on how
we select the starting point. A natural idea is to take, as the starting point,
the moment when the pavement was open to traffic. However, this starting
moment may differ: in some cases, the pavement is released as soon as it is
supposed to be ready for traffic, in other cases, the road managers are acting
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more conservatively and wait a few extra days to be absolute sure that the
road is ready. There is no fixed time for this release.

Depending on the choice of the release time, we get different numerical
values of the time t. Namely, if we release the pavement d days earlier, then
we need to add this number d to all the numerical values of time: t 7→ t+ d.

Since there is no preferred release time, it makes sense to assume that the
formula for the dependence on S on t should not depend on this addition, i.e.,
that the new dependence S(t + d) should have the same form as the original
dependence S(t). Of course, we cannot simply require that S(t+ d) = S(t) for
all t and d, because that would mean that the function S(t) is constant, i.e.,
that the strength does not depend on time at all. However, we can use the
fact that such invariance situations are common in physics. For example, the
formula r = v · t describing the distance traveled r as a function of velocity v
and time t clearly does not depend on what unit we choose to measure velocity.
However, if we use km/h instead of miles per hour, for the formula to remain
valid, we need to corresponding re-scale the distance – from kilometers to miles.

Similarly, in our case, the fact that the expression for S(t) remains the
same after changing the starting time means that the formula remain valid if
we corresponding re-scale the strength. In contrast to time, for which we can
choose different starting points, for strength, there is a natural starting point
– 0 strength. However, the numerical value of the strength does depend on the
measuring unit. If we choose a unit which is λ times smaller, then all numerical
values of strength are multiplied by λ: S 7→ λ · S.

So, we conclude that for every time shift d, there exists a value λ –
depending on d – for which S(t + d) = λ(d) · S(t). It is known – see, e.g.,
[1, 13] – that all monotonic solutions of this functional equation have the form
S(t) = A · exp(b · t) for some constants A and b. This formula is equivalent to

ln(S) = a+ b · t, (3)

where we denoted a
def
= ln(A).

From the first approximation to the actual explanation. For small
times t, the first-approximation formula (3) provides a reasonable description
of the actual dependence (2), but for large t, the formula (3) is not very
accurate.

A possible reason for this is that in the formula (2), we used astronomical
time, while most processes have their own internal times that better describes
their evolution. For example, it is known that the health state of a person is
best described not by his/her astronomical time but by so-called biological
time which may be different. So, instead of the formula (3), we should have a
formula

ln(S) = a+ b · τ, (4)

where τ(t) is an internal time of the pavement.
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For different pavements, we may have different internal times. In other
words, we have different scales for measuring time, with possibly nonlinear
transformations from one scale to another. What are these transformations?

Of course, we can have different time scales if we use different units for
measuring time. Similar to measuring strength S, if we select a measuring
unit which is c times smaller, then all numerical values are multiplies by c:
t 7→ c · t. As we have already mentioned, if we select a new starting point for
measuring time which is d moments earlier than the previous one, then we
add d to all numerical values: t 7→ t + d. If we change both the measuring
unit and the starting point, then we have a general linear transformation t 7→
c · t + d. So, the set T of all appropriate transformations should include all
linear transformations.

It is also reasonable to conclude that if a transformation t 7→ f(t) is appro-
priate, i.e., that it transforms from some scale A to another scale B then the
inverse transformation f−1(t) that transforms from scale B back to scale A
should also be appropriate, i.e., should also belong to the class T . Similarly,
if we have two appropriate transformations, then if we apply them one after
another – i.e., if we consider their composition – then we should get an appro-
priate transformation. Thus, the class T should be closed under taking the
inverse and under taking the composition. In mathematical terms, such classes
are known as transformation groups.

We want to be able to use these transformations in computer programs
that predict how pavement strength changes with time. In a given computer,
we can only store finitely many numbers. Thus, we should have a fixed num-
ber of numerical parameters that describe all appropriate transformations. In
other words, the family of transformations T should be finite-parametric, or, to
use an appropriate mathematical term, finite-dimensional. So, to describe all
appropriate transformations, we need to describe all finite-dimensional trans-
formation groups that contain all linear transformations. A description of all
such groups was conjectured in [16]. This conjecture was proven in [6, 14]. In
our 1-D case, when we consider transformations of one variable, the result is
that all appropriate transformations are fractional linear, i.e., that they all
have the form

τ =
a+ b · t
1 + c · t

; (5)

for the 1-D case, a simpler proof of this conjecture is possible [10].
Substituting the expression (5) for the internal time in the formula (4), we

conclude that ln(S) is indeed equal to a fractionally linear expression in terms
of time, i.e., that we have indeed explained the empirical formulas (1)-(2).

4 Exploitation Stage: How Strength Decreases
With Use

Empirical formulas. Once the additives solidify and the pavement reaches its
desired strength, the pavement deteriorates and its strength decreases. As we
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have mentioned, the strength decreases both by the traffic and by the freeze-
thaw and wet-dry cycles. The empirical formula describing how the strength
decreases with the number N of freeze-thaw and wet-dry cycles is given in [8]:

S = a+
b

1 + exp(c ·N)
. (6)

A similar expression – but with different coefficients a, b, and c – describes
how the strength decreases with the number of cars N . How can we explain
these empirical formulas?

Our explanation. Our explanation is based on the fact that there is some
uncertainty in the number of freeze-thaw and wet-dry cycles: we can start
counting them from the very beginning, when the road is started to be built; we
can start counting them form the moment when the additives are added to the
pavement, or we can start counting from the moment when the road achieved
its maximum strength. It is reasonable to require that the dependence S(N)
should be described by a similar formula no matter when we start counting.

If we start counting earlier, then we add some fixed number of cycles N0 to
the previous count, i.e., we replace N with N +N0. It is therefore reasonable
to require that the functions S(N) and S(N +N0) corresponding to different
starting point should be described by a similar expression. Similarly to the
previous case, this means that they may be obtained from each other by some
appropriate transformation. In the previous section, we considered only scaling
S 7→ λ · S, but to be as general as possible let us consider the most general –
possibly nonlinear – transformations. In the previous section, we have already
shown that such transformations are fractionally linear. Thus, we conclude
that for each N0, the expressions S(N + N0) and S(N) are related to each
other by a fractionally linear transformation

S(N +N0) =
a(N0) + b(N0) · S(N)

1 + c(N0) · S(N)
. (7)

It is known – see, e.g., [10] – that every decreasing non-negative function S(N)
that satisfies this functional equation has either the form (6) (or the form
S(N) = a+ b · exp(−c ·N), which is, in effect, a limit case of the formula (6)).
This explains the empirical formula (6).

Comment. To prove this result, we can differentiate both sides of the formula
(7) with respect to N0 and take N0 = 0. Then, we get the following differential
equation:

dS

dN
= A+B ·N + C ·N2

for some A, B, and C. We can then conclude that

dS =
dN

A+B ·N + C ·N2
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and thus, that

S(N) =

∫
dN

A+B ·N + C ·N2
.

There are known formulas for this integral, and selecting decreasing non-
negative solutions leads to the above result.

5 Exploitation Stage: How Lifetime Depends
on Stress Level

Empirical formulas. The larger the stress level, the smaller the pavement
lifetime T , i.e., in other words, the smaller the number N of cycles are which
the pavement will need to be repaired. The empirical formula describing this
dependence – as given in [8]:

T = A · exp(−b · σ). (8)

How can we explain this empirical formula?

Our explanation. For lifetime, we have a fixed starting point – the moment
when the road was built, but, in general, we do not have a preferred measuring
unit. With stress, the situation is more complicated: we can measure stress
as the pressure caused by the passing traffic, or we can measure the overall
pressure – that include the atmospheric pressure. When we take into account
atmospheric pressure, we thus add this pressure σ0 to the original stress value
σ: σ 7→ σ+σ0. From this viewpoint, the stress is defined modulo an appropriate
shift.

It is therefore reasonable to require that the dependence T (σ) should not
change if we select a different starting point for measuring stress, i.e., that the
expression T (σ) and T (σ + σ0) describe the same dependence – provided, of
course, that when we perform the shift, we appropriately re-scale the lifetime,
i.e., that

T (σ + σ0) = C(σ0) · T (σ) (9)

for some C(σ0). As we have already mentioned, it is known – see, e.g., [1, 13] –
that all monotonic solutions of this functional equation have the desired form
(8).

6 Exploitation Stage: How Lifetime Depends
on Dry Density of the Soil

Empirical formulas. The pavement lifetime T also depends on the density of
the underlying soil: the higher this density, the sturdier the road and the larger
the pavement lifetime. The actual density of the soil changes when the soil is
dry and when it is wet. We need a value that depends only on the soil itself.
A natural idea is to use the dry density ρ. The empirical formula describing
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the dependence of the pavement lifetime T on the dry density ρ – as given in
[8] – is:

ln(T ) = c · ln
( ρ

ω

)
. (10)

How can we explain this empirical formula?

Our explanation. To explain this formula, let us first transform it into a
more explicit form, so that it will be describing explicitly the dependence of
the lifetime T on the dry density ρ. The formula (10) describes ln(T ). So, to
get a formula for T , we need to apply exp(x) to both sides of the formula (1).
Then, the left-hand side of this formula takes the form exp(ln(T )) = T , and
the formula itself gets the following equivalent form:

T = exp
(
c · ln

( ρ

ω

))
=

(
exp

(
ln
( ρ

ω

)))c

=
( ρ

ω

)c

,

i.e., the form
T = A · ρc, (11)

where we denoted A
def
= ω−c.

For lifetime, we have a fixed starting point – the moment when the road
was built. For dry density ρ, we also have a fixed starting point – the density
ρ = 0 corresponding to the absence of dry materials. However, in both cases,
there does not seem to be any fixed measuring unit. It is therefore reasonable
to require that the dependence T (ρ) should not change if we select a different
measuring unit for dry density, i.e., that the expression T (ρ) and T (λ · ρ)
describe the same dependence – provided, of course, that when we re-sacle dry
density, we appropriately re-scale the lifetime, i.e., that

T (λ · ρ) = C(λ) · T (ρ) (12)

for some C(λ). It is known – see, e.g., [1, 13] – that all monotonic solutions of
this functional equation have the desired form (11), i.e., equivalently, the form
(10).
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