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Abstract. In high performance computing, when we process a large
amount of data, we do not have much information about the dependence
between measurement errors corresponding to di�erent inputs. To gauge
the uncertainty of the result of data processing, the two usual approaches
are: the interval approach, when we consider the worst-case scenario in
which all measurement errors are strongly correlated, and the probabilis-
tic approach, when we assume that all these errors are independent. The
problem is that usually, the interval approach leads to too pessimistic,
too large uncertainty estimates, while the probabilistic approach often
underestimates the resulting uncertainty. To get realistic estimates, it is
therefore desirable to have techniques intermediate between interval and
probabilistic ones. In this paper, we propose such techniques based on
the assumption that, in each practical situation, there is an upper bound
b ∈ [0, 1] on the absolute value of all correlations � the bound that needs
to be experimentally determined. For b = 0, we get probabilistic esti-
mates, for b = 1, we get interval estimates, and for intermediate values
b, we get the desired intermediate techniques. We also provide e�cient
algorithms for implementing the new techniques.

Keywords: Interval uncertainty· Probabilistic uncertainty · High per-
formance computing.

1 Formulation of the Problem

Need to take uncertainty into account in high-performance comput-

ing. One of the main applications of high performance computing is estimating
the values of some quantities y based on the inputs x1, . . . , xn. For example,
in weather prediction, we estimate tomorrow's temperature y at some location
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based on the results xi of meteorological measurements in the vicinity of this
location.

The problem is that even when the data processing algorithm

y = f(x1, . . . , xn)

describes the exact relation between y and xi, the value ỹ = f(x̃1, . . . , x̃n) �
that we obtain by processing measurement results x̃i � is not exact: since the
measurement results x̃i are, in general, di�erent from the actual (unknown)
values xi of the corresponding quantities. Because of the measurement errors

∆xi
def
= x̃i − xi, the result ỹ of data processing is, in general, di�erent from

the desired value y. It is important to provide an estimate for the resulting

uncertainty ∆y
def
= ỹ − y; see, e.g., [6].

What do we usually know and what we usually do not know about

the measurement errors ∆xi. For each measuring instrument, we know the
upper bound ∆i on the absolute value of the measurement error, i.e., a value
for which |∆xi| ≤ ∆i. Indeed, if no such bound is guaranteed, this would mean
that for any measurement result, the actual value can be anything � this would
be a wild guess, not a measuring instrument.

In many practical applications, each measuring instrument is calibrated: be-
fore using this instrument, we several times compare its results with the results
of a much more accurate instrument; thus, if the mean value of the measurement
error was not 0, we can �nd this mean value (known as bias) and correct for it
by subtracting this mean value from all the measurement results. Thus, we can
safely assume that for each instrument, the mean value of the measurement error
is 0.

In most applications, we can also safely assume that the measurement errors
are relatively small. So we can safely ignore terms which are quadratic or higher
order in terms of these errors. For example, even if the relative measurement
error is 10%, its square is 1%, which can be safely ignored in comparison with
10%.

This is often all we know. Ideally, we should also know the probability dis-
tributions of all the measurement errors and all the correlations between them.
In simple computations, when the number n of inputs is small, it is possible to
extract this information for all n instruments and all n2/2 pairs of instruments.
So, for simple computations, this information is sometimes available. However,
for high-performance computing, when n is large, it is not feasible to extract all
this information, so this information is usually not available.

Possibility of linearization. By de�nition of the measurement errors, we have
xi = x̃i −∆xi, thus

∆y = f(x̃1, . . . , x̃n)− f(x̃1 −∆x1, . . . , x̃n −∆xn).

Since the measurement errors ∆xi are small, we can expand the expression
f(x̃1−∆x1, . . . , x̃n−∆xn) in Taylor series in terms of ∆xi and keep only linear
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terms in this expansion. As a result, we get

∆y =

n∑
i=1

ci ·∆xi, (1)

where

ci
def
=

∂f

∂xi |x1=x̃1,...,xn=x̃n

. (2)

How ∆y is estimated now: �rst technique. Since we have no information
about the correlation between the measurement errors, a natural idea is to con-
sider all possible correlations. In general, since |a+b| ≤ |a|+|b| and |a·b| = |a|·|b|,
from the formula (1), we get

|∆y| ≤
n∑

i=1

|ci| · |∆xi|.

Since |∆xi| ≤ ∆i, we get

|∆y| ≤ ∆int
def
=

n∑
i=1

|ci| ·∆i. (3)

This value ∆int is the exact upper bound, in the sense that it is possible to
have |∆y| = ∆int with probability 1. Indeed, this happens when:

� with probability 1/2, we have ∆xi = ∆i · sign(ci), where, as usual,
sign(x) = +1 for x > 0 and sign(x) = −1 for x < 0; and

� with probability 1/2, we have ∆xi = −∆i · sign(ci).

In this case:

� with probability 1/2, we have ∆y = ∆int, and
� with probability 1/2, we have ∆y = −∆int.

This worst-case estimate (3) is known as the interval estimate, since this is
the only estimate that we can guarantee based on the available information �
that all measurement errors ∆xi are located within the corresponding interval
[−∆i, ∆i]; see, e.g., [2, 4, 5].

Interval technique: limitation. The main problem with this approach is that
the resulting worst-case estimates are too pessimistic. In most practical situa-
tions, the actual value ∆y is much smaller than ∆int.

How can we explain this limitation. The above limitation can be easily
explained. Indeed:

� In the arrangement that leads to ∆y = ∆int, all measurement errors are
highly correlated, with correlation coe�cients ±1.
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� In practice, it is possible that common factors a�ect several measurement in-
struments, but there are also usually other factors which a�ect only one mea-
suring instrument, so the correlation is usually larger than −1 and smaller
than 1.

How ∆y is estimated now: second technique. Another idea is that since
we have no reason to prefer negative or positive correlation, it is reasonable to
assume that the correlation is 0, and, more generally, that di�erent measurement
errors are independent.

This is also what follows from the Maximum Entropy approach [3], when
out of all possible joint distributions ρ(∆x1, . . . ,∆xn) for which mean of each
variable is 0 and which are located on the given intervals [−∆i, ∆i], we select
the distribution with the largest value of entropy

S
def
= −

∫
ρ(∆x1, . . . ,∆xn) · ln(ρ(∆x1, . . . ,∆xn)) d∆x1 . . . d∆xn.

Independence means that for each i ̸= j, the expected value E[∆xi ·∆xj ] of
the product ∆xi ·∆xj is equal to the product of expected values

E[∆xi ·∆xj ] = E[∆xi] · E[∆xj ],

i.e., since the mean value of each measurement error is 0, to

E[∆xi ·∆xj ] = 0.

In this case, the expected value of (∆y)2 is equal to

E[(∆y)2] =

n∑
i=1

c2i · Vi,

where by

Vi
def
= E[(∆xi − E[∆xi])

2] = E[(∆xi)
2],

we denoted the variance of the i-th measurement error.
As is well known in statistics, for large n, the deviation from this average is

small � since it grows with n as
√
n, while the expected value itself grows as n

[7], so we conclude that the actual value (∆y)2 is, with high accuracy, equal to
this expected value:

(∆y)2 ≈
n∑

i=1

c2i · Vi.

We do not know the variances Vi, but, since |∆xi| ≤ ∆i, we have (∆xi)
2 ≤ ∆2

i .
Thus, the expected value Vi of the square (∆xi)

2 is also bounded by the same
bound ∆2

i :
Vi ≤ ∆2

i .

This upper bound on the variance Vi is the best we can have � it is attained
if:
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� we have ∆xi = ∆i with probability 1/2, and
� we have ∆xi = −∆i with probability 1/2.

Thus, we conclude that

(∆y)2 ≤
n∑

i=1

c2i ·∆2
i ,

i.e., that

|∆y| ≤ ∆prob
def
=

√√√√ n∑
i=1

c2i ·∆2
i . (4)

Probabilistic technique: limitation. The main problem with this proba-
bilistic technique is that it is too optimistic, it often drastically decreases the
approximation error ∆y.

How can we explain this limitation. The above limitation can be easily
explained. Indeed:

� This technique assumes that all the measurement errors are independent.
� However, as we have mentioned, in reality, there may be common factors

a�ecting several instruments, and thus, there is correlation.

Need for intermediate techniques. Since the interval techniques are too
pessimistic and the probability techniques are too optimistic, it is desirable to
have intermediate techniques that would provide more realistic estimates.

The main objective of this paper is to provide such estimates.

2 Main Idea and the Resulting Formula and Algorithm

Main idea. As we have mentioned, the problem with the interval technique
is that it assumes that the absolute value of the correlation can be 1, while in
practice, it is always smaller than 1. Similarly, the problem with the probabilistic
technique is that it assumes that all correlations are 0s, while in practice, they
can take non-zero values.

So, a natural idea is to assume that there is some number b between 0 and 1
that provides an upper bound for absolute values |rij | of all the correlations

rij
def
=

E[∆xi ·∆xj ]

σi · σj
,

where σi
def
=

√
Vi:

|rij | ≤ b.

This value can be determined empirically, by computing absolute value of
the correlation for several randomly selected pairs of measuring instruments and
selecting the largest of these values.
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From the idea to the resulting formula. From the formula (1), we conclude
that

(∆y)2 =
∑
i=1

c2i · (∆xi)
2 +

∑
i ̸=j

ci · cj ·∆xi ·∆xj ,

hence

E[(∆y)2] =

n∑
i=1

c2i · E[(∆xi)
2] +

∑
i ̸=j

ci · cj · E[∆xi ·∆xj ],

i.e.,

E[(∆y)2] =

n∑
i=1

c2i · Vi +
∑
i̸=j

ci · cj · rij · σi · σj .

We know that (∆y)2 ≈ E[(∆y)2], we know that |rij | ≤ b, so we conclude that

(∆y)2 ≤
n∑

i=1

c2i · σ2
i +

∑
i̸=j

|ci| · |cj | · b · σi · σj .

We have mentioned that σi ≤ ∆i, thus

(∆y)2 ≤
n∑

i=1

c2i ·∆2
i +

∑
i ̸=j

|ci| · |cj | · b ·∆i ·∆j . (5)

Here,

I2int =

(
n∑

i=1

|ci| ·∆i

)2

=

n∑
i=1

c2i ·∆2
i +

∑
i ̸=j

|ci| · |cj | ·∆i ·∆j ,

thus the formula (5) takes the form

(∆y)2 ≤ b · I2int + (1− b) ·

(
n∑

i=1

c2i ·∆2
i

)
,

i.e., the form
(∆y)2 ≤ b · I2int + (1− b) · I2prob.

So, we arrive at the following �nal formula.

Resulting formula.

|∆y| ≤ Ib
def
=
√

b · I2int + (1− b) · I2prob. (6)

How to compute this estimate. There exist e�cient algorithms:

� for computing Iprob � based on Monte-Carlo simulation of normally dis-
tributed measurement errors � and

� for computing Iprob � based on using Cauchy distribution [1].

In both algorithms, the number of simulations depend only on the desired accu-
racy and does not depends on the number n of inputs.

By using these algorithms, we can e�ciently compute the new estimate (6).
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