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Abstract—In many practical situations, we need to process data
under fuzzy uncertainty: we have fuzzy information about the
algorithm’s input, and we want to find the resulting information
about the algorithm’s output. It is known that this problem can
be reduced to computing the range of the algorithm over alpha-
cuts of the input. Since the fuzzy degrees are usually known with
accuracy at best 0.1, it is sufficient to repeat this range-computing
procedure for 11 values alpha = 0, 0.1, ..., 1.0. However, a
straightforward application of this idea requires 11 times longer
computation time than each range estimation — and for complex
algorithms, each range computation is already time-consuming.
In this paper, we show that when all inputs are of the same time,
we can compute all the desired ranges much faster.

Index Terms—fuzzy data processing, computing the range,
interval computations, central form, Cauchy deviates method

I. FORMULATION OF THE PROBLEM
A. Need for Fuzzy Data Processing

Often, we are interested in a quantity y that is difficult to
estimate directly. In many such cases, we know a relation y =
f(x1,...,x,) between this quantity y and auxiliary quantities
x; for which we do have expert estimates.

Usually these expert estimates are formulated in terms
of imprecise (“fuzzy”) words from a natural language like
“small”. A natural way to describe such “fuzzy” estimates is
to use fuzzy techniques; see, e.g., [1], [3], [8], [11]-[13].

Based on this description, we need to gauge the resulting
uncertainty in y.

B. Enter Zadeh’s Extension Principle

In fuzzy technique, the information about each input z; is
described by assigning, to each real number X;, the degree
1i(X;) € [0,1] to which, according to the expert, this number
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is a possible value of x;. The corresponding function u;(X;)
is known as a membership function.

Based on this information, we need to find a similar
membership function p(Y) for the quantity y = f(x1,...,2,)
that describes, for each real number Y, the degree to which
this number is a possible value of y.

Intuitively, a number Y is a possible value of the quantity
y if and only if there exist values Xi,..., X,:

« which are possible values of the corresponding inputs and

o for which Y = f(X4,...,X,).

We know the degrees p;(X;) to which each X; is a possible
value of x;. So:

o if we use the simplest way to describing “and” and “or”

in fuzzy techniques — as min and max — and

« take into account that “there exist” is nothing else by an

infinite “or’,
we conclude that
uY) =

a,un(Xn)) : f(X17 sy

This formula was first introduced by Zadeh and is thus known
as Zadeh’s extension principle.

max{min(u (X1),... X,) =Y}

C. What If the Dependence Between x; and y Is Only Ap-
proximately Known?

In our analysis, we assumed that the dependence y =
f(z1,...,2,) is exact. In many practical situations, however,
we only know an approximate dependence, i.e., we know that

y =~ f(x1,...,2,), and we only have fuzzy information about

. def
the inaccuracy m = y — f(x1,...,2n).

In this case, we actually have the exact dependence y =
flz1,...,2,) + m on n + 1 inputs x1,...,x,, m (ie., we
can view m as z,41). For each of these n + 1 inputs, we
know the corresponding membership function. Thus, from the
computational viewpoint, this more realistic formulation can
be reduced the previously considered case.

In view of this reduction, in the following text, we will
assume that the dependence between y and z; is exactly
known.



D. How to Perform Fuzzy Data Processing

A known way to perform the corresponding computations
is to take into account that for each « € [0, 1], the a-cut

y(a) €Y u(Y) > o}

of y is equal to the range of the function f(z1,..
a-cuts

.,Tp) On

xi(@) © (X, (X)) > a)

of the inputs x;:

y(a) ={f(z1,...

see, e.g., [10].

Techniques for computing such ranges are known as infer-
val computation; see, e.g., [2], [7], [9]. In general, interval
computation is NP-hard [6], meaning that for large n, exact
computation of the range is not always feasible. However,
there are efficient approximate interval techniques.

Tn) 2 € x5(a)};

E. How Many o-Cuts Do We Need?

Theoretically, there are infinite many possible values o €
[0,1]. However, since the fuzzy degrees are usually known
with accuracy at best 0.1, it is sufficient to repeat this range-
computing procedure for 11 values o = 0,0.1,...,1.0.

So, to find the corresponding «-cuts for y, we can simply
apply interval techniques 11 times.

FE. What If Some Information Comes from Measurements?

In this case, for the corresponding input z;, we know the
interval of possible values, and the interval — like every other
crips set — is, of course, a particular case of a fuzzy set. So,
this case can also be handled the same way as before.

G. Problem: The Current Procedure May Take Too Long

For complex algorithms — and many data processing algo-
rithms are very complex — each range computation is already
time-consuming. The need to repeat this computation 11 times
increases the computation time by an order of magnitude and
can, thus, make the computations not practical.

For example, an accurate prediction of tomorrow’s weather
may takes several hours on a high-performance computer. If
we need to repeat these computations 11 times to find a good
description of the accuracy of the prediction results, this will
take more than a day — and this makes no sense, since by then
we will already observe tomorrow’s weather.

It is therefore desirable to speed up computations.

H. What We Do in This Paper

In this paper, we show how to speed up the corresponding
computations. We consider two cases:

« the main case, when any approximate method will work,
and

e an important auxiliary case when we need to have a
guaranteed bound.

For each case, we propose a way to speed up the corresponding
computations.

II. CASE OF LINEARIZATION
A. We need to compute an interval range
For usual membership functions, a-cuts are intervals. The
data processing algorithms are usually continuous, so the
desired range is also an interval. Thus, for each «, we need
to compute the range

[y, 9] = {f(z1,..

Ty m € [z, T}

of the given function f(z1,...,z,) on given intervals [z;, T;].

As we have mentioned, in general, the exact computation
of such a range is NP-hard. Som we can, at best, get an
approximate estimate for this range.

B. Cased When Linearlization Is Possible

In many practical situations, the estimation error is relatively
small, i.e., the interval width Z; — z, is much smaller than the

actual values z; from this interval — e.g., 10% or 20% of

. . £
this value. Thus, the difference Ax; df T; — x; between the

midpoint Z; def (z; +%;)/2 and a possible value z; € [z;,T;]

is also small. This difference is bounded by the interval’s half-
width A; déf (fl — gz)/Q, so Ax; € [—Al, Az]

In this case, terms quadratic in such small differences are
much smaller than linear terms: e.g., square of 10% is 1%
which is much smaller than 10%. Thus, we can linearize the
problem, i.e.:

« expand the difference ¥ — y, where ¥ def f(@1,...,2,)
is the result of processing midpoints, in Taylor series in
terms of the small differences Ax;, and

o keep only linear terms in this expansion.

As a result, we get:
Ay=y—y= f(Z1—-Azxy,...,Tp—Ax,)— f(Z1,...

of
(%ci '

(Ty) R

n
Z ¢; - Ax;, where ¢; =
i=1
For a linear function Ay, its largest possible value is attained
when Ax; attains:

o its largest possible value A; when ¢; > 0 and
o its smallest possible value —A; when ¢; < 0.

The resulting largest value A of the difference Ay def y—y
is equal to A = > |¢;| - A;. Similarly, one can show that the

i=1
smallest possible value of Ay is —A. So, the resulting interval
range of possible values of y is [§ — A,y + A].

C. How This Problem Is Solved Now

To use the above formula for A, we need to know the values
of all the partial derivatives c;. For small n, we can feasibly
compute all these values by the usual numerical differentiation
techniques, e.g., as

f(@,..

G Tie1, T+ R, Tig1, . Tn) — Y
h; ’

c; ~

for some small h;.



For complex data processing algorithms, however, we often
have thousands of inputs, so computing all partial derivatives
would take too long. In this case, it is possible to use
Cauchy deviate Monte-Carlo method [5], which is based on
the fact that if the variables Ax; are Cauchy distributed with
parameters A;, then the linear combination Ay = > ¢; - Ax;
is also Cauchy distributed, with parameter A =Y |¢;| - A,.

In this method — in contrast to numerical differentiation —
the number of calls to the algorithm f does not depend on the
number of variables n. This number of calls depends only on
the desired accuracy and remains constant when n grows.

D. Limitations of The Current Approach

If we follow this algorithm, then, to compute the a-cut for
all eleven values of «, we need to call the Cauchy method
eleven times.

Can we do it faster? It turns out that we can — in frequent
situations when all membership functions are of the same type.

E. What If All Membership Functions Are of the Same Type:
Description of the Situation

Often, all membership functions are of the same type: e.g.:

o all are symmetric triangular, or
o all are Gaussian.
In general, this means that all these membership functions
1i(X;) are obtained from some standard membership function
po(X) by some scaling X — s-X (with s > 0) and shift
X = X+c,ie., pi(X;) = po(si- X;+c¢;) for some s; and ¢;.

For each membership function, there is some “most proba-
ble” value — e.g., the midpoint of the 1-cut, i.e., of the set of
all the values for which the degree of possibility is 1.

If for the original membership function this value is not 0,
we can appropriately shift this standard function, and get a
new standard function for which this point is 0. Shifting the
standard membership function does not change the class of all
membership functions obtained from the standard one by shifts
and scalings. Thus, without losing generality, we can safely
assume that for the standard function, the “most probable”
value is 0.

In this case, the a-cuts for z; are determined by the a-
cuts [¢(a), ()] of the standard membership function zio(X).
Indeed, here, 11;(X;) > « is equivalent to ug(s;- X;+¢;) > a,
ie., tos; - X; + ¢ € [l(a),r(a)], or, equivalently, to

la) <s;-Xi+e <r(a).
Subtracting c¢; from all three sides of this inequality and

dividing all three sides by s; > 0, we conclude that the
condition u;(X;) > « is equivalent to

(1/si) - L) + (ci/si) < X < (1/s3) -r(a) + (ci/s:),
i.e., to
where we denoted a; def 4 /s; and b; def ¢i/s;. Thus, the a-cut

x; () of the i-th input has the form
x;(@) = [a; - (@) + bi,a; - 7(£) + by

In particular, for each of these functions, the most probable
value is a; - 0 + b; = b;.
How can we speed up computations in this case?

F. What If All Membership Functions Are of the Same Type:
Analysis of the Problem

In the linearized case, once we know the value y =
f(b1,...,b,) corresponding to the most probable values b;, for

the difference Ay = §— f(x1,...,x,), we get the expression
Ay = E C; - Al‘i, where Al‘l déf bi — Ti. When
i=1

xT; € [ai . E(Oé) + bi, a; - T(f) + bl],
then the difference Ax; = b; — x; belongs to the interval
[A7 (), Af (@)] = [~a; - r(a), —a; - £(a)].

Similarly to the above derivation of the linearization case,
to compute the range [A~(a), At (a)] of the linear function
e - Az; when Az; € [A; (a), Af ()], we can represent
each input interval as

Ai@) — Ai(a), Ai(a) + Ai(a)} :

where
A i (o S« a) +r(a
Koy = AL@ AN __, Ha)+r(e)
and
Flo) = A7 (a r(a) — fa
Aoy = L@ =BT rlo) e

In this case, we have
[A™ (@), A% (@)] = [Aa) = Aa), Al) + A(a)],

where

Ba) =Y e Bifa) =Y cre {_ai.MHNa) _

for some small h.

Similarly,
A(O[) _ T(OZ) ;E(O&) . B7
where we denoted
def -
B=)Y el - ai. (2)
i=1

The expression (2) can be computed by using the Cauchy
deviate method.
Thus, we arrive at the following algorithm.



G. Resulting Algorithm
We are given:
o a function f(x1,...,2p),
o values ¢(«) and r(«) describing the shape of the common
membership function, and
« values a; and b; describing specific membership functions
for each inputs x;.
First:
o we compute the values § = f(b1,. ..
by calling the algorithm f, and
e we compute the expression (2) by using the Cauchy
deviate method.

,by) and (1) simply

Then, for each o, we compute the desired range y(«) as

y(e) =
~ U(a) + () r(a) — o)
+ A 5 - B- 5 ,
JrA- () —;—r(a) LB r(a) ;E(a)

H. How Faster Is This Algorithm?

o In the currently used approach, we need to call the
Cauchy method 11 times.

¢ In the new algorithm, we only call the Cauchy method
once.

1. What About More General Families of Membership Func-
tions?

So far, we considered the case when the a-cuts of all
membership functions are described by a linear expression
with two parameters depending on <. It is possible to consider
more general families of membership functions, in which the
corresponding linear expression depends on p > 3 parameters
— e.g., the families:

o of all possible (not necessarily symmetric) triangular

functions, or

« of all possible trapezoid functions.

In this case, similar formulas show that we can compute the
desired range by calling Cauchy method p — 1 times. For p <
12, this is still better than the original method.

This idea also takes care of the case when:

« some membership functions belong to one family (e.g.,
triangular) and
e some belong to another family (e.g, Gaussian).
In this case, we can view both linear expressions as a particular
case of a general linear formula with more parameters. Thus,
we can use the same idea as in the previous paragraph.

III. CASE OF PROPER INTERVAL TECHNIQUES

A. Why Go Beyond Linearization

Linearlization methods are approximate, they may slightly
overestimate or underestimate the desired range. In some
applications, it is very important to make sure that the actual
value y does not exceed a certain threshold; e.g.:

« that the nuclear power station does not go into the critical
regime,

o that the pollution level of a chemical plant does not
exceed the allowed concentrations,

« that the predicted strong wind does not exceed the thresh-
old at which damage to power lines is possible, etc.

To have this guarantee, it is important to makes sure that all
possible values y are included in our interval estimate, i.e.,
that this interval estimate contains (encloses) the actual range.
Such estimates are known as enclosures for the actual range.

B. Naive Interval Computation: Description and Limitations

A naive — not very good — method for computing the
enclosure is to use so-called naive interval computation.

This method is based ion the fact that for the cases when
data processing consists of a single arithmetic operation, we
can explicitly compute the range of the resulting value:

(21, Z1] + (29, T2] = [2) + 25, T1 + T2;
[21,71] = [29, 2] = [77 — T2, 71 — 2,);
[21,T1] - [29,T2] = [min(zy - 29,21 - T2, T1 - 29,71 - T2),

max(z; - Lo, Ty - T2, T1 - Lo, T1 - T2);
[z, T1] = [1/Z1, 1/2y] if O € [24,71];
(21, Z1]/[24, 2] = [21,71] - (1/[22, 72)).

These formulas are known as formulas of interval arithmetic.

In a computer, any algorithm is implemented as a sequence
of arithmetic operations. If we replace each arithmetic oper-
ation with the corresponding operation of interval arithmetic,
we get an enclosure.

For example, when a computer computes the value of a
function f(z) =z - (1 — z), it:

o first computes the difference »r =1 — z, and

 then computes the product z - r.
So, to find an enclosure for the range of this function on the
interval [0, 1], we can:

« first apply interval subtraction to find the range for r as

[1,1]—-[0,1]=[1—-1,1—-0] =0,1],

and
« then apply interval multiplication to compute

[Oal] : [Oal] =
[min(O-O,O-l,l-071~1),max(0-0,0-1,1-071-1)} =
0,1].

The resulting range [0, 1] is clearly an enclosure for the actual
range [0,0.25], but a very crude one.

Comment. In general, naive interval computation replaces each
arithmetic operation with numbers with at least two operations
with numbers — and is, thus, at least twice longer than
computing a single value of the function f(x1,...,x,).



C. More Adequate — Even Asymptotically Optimal — Interval

Techniques

Interval computation packages computed much narrower
(and thus, more practically useful) enclosures. One of the main
ideas is to use centered form.

In this technique, on each input interval [z, T;], we select
a representative value Z;. This could be a midpoint, this could
be a different point from this interval.

Then, each possible value z; € [z;,7;] can be represented
as T; — Ax;, where

Az; € AT AT Y 7 — 3,7 — ).

The centered form technique is based on the Intermediate
Value Theorem, according to which for each combination of
values Az; € [A;, A]], there exist values &;; from the same
intervals [A;, AF] for which

Ay:f(.,fl,...,

571) —f(%l —Al‘l,...,.%n —Al‘n) =

We know that, since &;; € [A], Aj], each partial derivative
value belongs to the range of this partial derivative on this
interval, and thus, belongs the enclosure D;([A;", Af]). This
enclosure can be computed, e.g., by naive interval computa-
tion.

Also, we know that Ax;
that

€ [A;7,Af]. Thus, we conclude

AyeDE Y DA AN) - (A7, AF).

i=1

The right-hand side of this formula is what is called the
centered form.

It is known that this feasible-to-compute formula is asymp-
totically the most accurate, in the following sense:

« for some constant C, it provides the C - h? accuracy in
estimating the range, where h is largest width of the input
intervals, while

o estimating the range with higher accuracy c - h? is NP-
hard for sufficiently small c; see, e.g., [4].

D. Fuzzy Case: Limitations

If we apply this technique for each «, i.e., if for each a,

we compute

)= _Di(lA] (@),

then we need to compute n enclosures for partial derivatives
11 times — and, as we mentioned, computing an enclosure is
rather time-consuming.

E. What We Propose: Idea and the Resulting Algorithm

Instead of computing the enclosures for the partial deriva-
tives for every «, why not use the fact that all a-cuts are all
subsets of the a-cut corresponding to o = 0 — and thus, all the
values of the partial derivative are contained in the enclosure
corresponding to e = 0.

So, we can compute such enclosures only once — and then
use the formula

ZD

Good news is that the resulting expression — while slightly
less accurate — is still asymptotically optimal.

0), AF(0)]) - [A7 (), Af (@)].
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