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Abstract In many real-life situations, deviations are caused by a large number of
independent factors. It is know that in such situations, the distribution of the result-
ing deviations is close to Gaussian, and thus, that the copulas – that describe the
multi-D distributions as a function of 1-D ones – are also Gaussian. In the past,
these conclusions were also applied to economic phenomena, until the 2008 crisis
showed that in economics, Gaussian models can lead to disastrous consequences.
At present, all economists agree that the economic distributions are not Gaussian
– however, surprisingly, Gaussian copulas still often provide an accurate descrip-
tion of economic phenomena. In this paper, we explain this surprising fact by using
fuzzy-related arguments.

1 Formulation of the Problem

Gaussian distributions are ubiquitous. Gaussian (normal) distributions are named
after the great German mathematician and physicist Karl Friedrich Gauss (1777-
1855) who discovered that these distributions adequately describe many real-world
phenomena.

Later, the ubiquity of these distributions got a theoretical explanation: it turns
out that under reasonable conditions, the distribution of the sum of a large number
relatively small independent random variables is close to Gaussian – and the more
variables we add, the closer the resulting distribution to Gaussian. This result is
known as the Central Limit Theorem; see, e.g., [11].
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In many real-life phenomena, what we observe is the result of the joint effect
of many small factors – e.g., what we view as noise during measurement is caused
by a large number of small independent factors. Not surprisingly, in the majority
of measuring instruments, the distribution of measurement error is indeed close to
Gaussian; see, e.g., [9, 10].

From distributions to copulas. Central Limit Theorem implies that both 1-D and
multi-D distributions are Gaussian.

For 1-D distributions, the most widely used ways of describing such distributions
are probability density functions f (x) and cumulative distribution functions (cdfs)

F(x) def
= Prob(X ≤ x).

In the multi-D case, it is also possible to use probability density functions
f (x1, . . . ,xn) and cumulative distribution functions

F(x1, . . . ,xn)
def
= Prob(X1 ≤ x1 & . . . &Xn ≤ xn).

However, in the multi-D case there is another convenient way of describing the
distribution: by describing:

• marginal cfds Fi(xi)
def
= Prob(Xi ≤ xi), and

• a function C(p1, . . . , pn) for which

F(x1, . . . ,xn) =C(F1(x1), . . . ,Fn(xn));

this function C(p1, . . . , pn) is known as a copula.

The advantage of such a copula-based representation is related to the fact that often,
there are different scale for measuring each quantity xi. For example, we can mea-
sure length in meters, in centimeters, or in inches – and in all three cases, the same
length is described by different numerical values. If we re-scale one of the variables
– or even several variables, then:

• the probability density function f (x1, . . . ,xn) and the cumulative distribution
function F(x1, . . . ,xn) change,

• but the copula remains the same.

This scaling-invariance is one of the main reasons why copulas are actively used in
many applications.

From Gaussian distributions to Gaussian copulas. For each multi-D family of
distributions, there is a corresponding family of copulas – copulas corresponding
to distributions from this family. In particular, copulas corresponding to multi-D
Gaussian distributions are known as Gaussian copulas.

Gaussian distributions and Gaussian copulas in economics: initial successes. In
the past, in line with the above general idea, specialists in economics also used nor-
mal distributions (and the corresponding Gaussian copulas) to describe economic
phenomena – and used them reasonably successfully.
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Gaussian distributions in economics: crisis. One of the properties of a normal
distribution is that deviations from the mean which are larger then 3 standard devi-
ations are extremely rare: they occur in 0.1% of the cases. Deviations larger than 6
standard deviations are even rarer: they occur once in 100 million cases.

So, if we assume that an economic process – such as stock market prices – is
normally distributed, we can safely ignore the possibility that these prices will go
down by more than 6 standard deviations. This is exactly what financial folks as-
sumed – and then came the 2008 crisis, when the prices unexpected dropped even
more than 6 standard deviations. This was a disaster, quite a few companies relying
on the Gaussian-derived stability of stock market went bankrupt, economies tanked.

Statistician almost immediately found out what went wrong: a detailed analysis
of the behavior of stock marker prices and other economic characteristics showed
that their actual distribution was differen from Gaussian; see, e.g., [2, 5].

Mystery: distributions are not Gaussian, but Gaussian copulas still apply. As
we have mentioned, Gaussian copulas are derived from Gasussian distributions. So,
since the distributions turned out to be non-Gaussian, it was natural to expect that
the copulas would turn out to be non-Gaussian as well. But, strangely, in many case,
Gaussian copulas still provide a very accurate description of economic phenomena;
see, e.g., [3] and references therein. How can we explain this?

What we do in this paper. In this paper, we provide an explanation for this unex-
pected success of Gaussian copulas, an explanation that used fuzzy-related ideas.

2 Analysis of the Problem and the Resulting Explanation

Why not Gaussian: let us analyze. Economic deviations are also caused by a large
number of small independent events, so why do not we get a Gaussian distribution
here? The Central Limit Theorem – that explains Gaussian distributions – assumes
that the joint effect of two small factors is equal to the sum of the effects of each of
these factors. In other words, it assumes that the factors do not interact with each
other.

This assumption may be true for the noise, where different noise components
simply add to each other. However, economy is more complicated. In economy,
everything is interrelated, and the joint effect of two factors is, in general, different
from a simple sum of the effects of individual factors. For example, for a small
company, inflation may be an annoying but possible-to-live-with problem, and tax
increase may be also not pleasant but tolerable, but the joint effect of these two
seemingly minor problems can bring the company into bankruptcy.

So how can we describe this situation? The above argument shows that in eco-
nomics, to adequately describe the joint effect of several factors, we cannot use
addition, we must use some other operation a∗b. What are the natural properties of
such an operation?
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• First, the joint effects of two or three factors should depend on the order in which
we combine these factors. So, we should have a∗b = b∗a (commutativity) and
a∗ (b∗ c) = (a∗b)∗ c (associativity).

• Second, if one of these factors is missing – e.g., if a = 0 – the joint effect should
simply coincide with another one: 0∗b = b.

• The joint effect should larger than each of the effects, i.e., unless either a > 0 or
b > 0 is already a disaster (maximally possible effect), we should have a < a∗b
and b < a∗b.

• Finally, small changes in a and b should cause small changes in a ∗ b. In other
words, the function a,b 7→ a∗b should be continuous.

Operations with such properties are known. The above properties are – almost
exactly – the properties that define Achimedean “or”-operations (t-conorms); see,
e.g., [1, 4, 6, 7, 8, 12] in fuzzy logic.

It is known that all such operations have the form a ∗ b = f−1( f (a)+ f (b)) for
some monotonic function f (a), where f−1(a) denotes the inverse function, i.e., the
function for which f (a) = b if and only f−1(b) = a.

This explains the ubiquity of Gaussian copulas. Indeed, the formula a ∗ b =
f−1( f (a)+ f (b)) can be equivalently described as f (a ∗ b) = f (a)+ f (b). Thus,
in general,

f (a1 ∗ . . .∗an) = f (a1)+ . . .+ f (an).

So, if, to describe the effect, instead of the values in the original scale a,b, . . .,
we will use values A def

= f (a), B def
= f (b), . . . , then in this new scale, the joint effect

A of several factors A1, . . . ,An is simply equal to the sum of the individual effects

A = A1 + . . .+An.

Thus, in this new scale, the joint effect is simply the sum of individual effects.
So, by the Central Limit Theorem, the distribution of the joint effect is Gaussian.
Therefore, the corresponding copula is Gaussian as well.

We have already mentioned that while non-linear re-scaling changes the marginal
distributions, it does not change the copula. Thus, while marginal distributions are
non-Gaussian, the copula remains Gaussian.

This is exactly the strange phenomenon that we have been trying to explain –
now we have an explanation.
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