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Abstract Traditional analysis of dynamical systems usually assumes that the map-
ping is continuous — in precise mathematical sense. However, as many formal defini-
tions, the mathematical definition of continuity does not always adequately capture
the commonsense notion of continuity: that small changes in the input should lead to
small changes in the output. In this paper, we provide a natural fuzzy-based formal-
ization of this intuitive notion, and analyze how the requirement of commonsense
continuity affects the properties of dynamical systems. Specifically, we show that
for such systems, the set of fixed points is closed and convex, and that the only
such systems for which we can both effectively predict the future and effectively
reconstruct the past are linear systems.

1 Formulation of the Problem

Many real-life processes are described by dynamical systems, in which the state
s(t+ 1) in the next moment time is uniquely determined by the state s(¢) at the
current moment of time: s(t + 1) = f(s(¢)) for some continuous function f(s).

For a given dynamical system, it is usually important to describe all its stationary
states, i.e., states with the following property: once the system reaches such a state,
it remains in this state. Applications of stationary states range from self-sustaining
ecological systems to stationary satellites that provide reliable communications.

In general, the set if all stationary states can be complicated, difficult to describe
and even more difficult to compute. However, in many such examples:

* while from the formal mathematical viewpoint, these dynamical systems are con-
tinuous,
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 from the commonsense viewpoint, the corresponding transformation f(s) is not
what we would call continuous: it transforms close states s and s’ into states f(s)
and f(s") which no longer that close.

So, a natural hypothesis is that for dynamical systems which are continuous in the
commonsense meaning of this word, we should have a simpler description of sta-
tionary states.

In this paper, we show that this hypothesis is indeed true — by proving the cor-
responding theorem. We also analyze how the property of commonsense continuity
affect the possibility to predict the future and to reconstruct the past.

2 Mathematical Continuity vs. Commonsense Continuity:
Analysis of the Difference

The difference. Most of us are so accustomed to the formal mathematical definition
of continuity that we tend to forget that — as many formal definitions — it does not
fully capture the commonsense idea of continuity. To many of us, the difference
between mathematical and commonsense continuity surfaces only when we try to
communicate with folks who are not mathematically trained.

This difference can be illustrated on a very simple example. Suppose that we
have a function f(x) which is:

e equal to O for x <0, equal to 1 for x > & for some small € > 0, and
* equal to x/¢ for values x between 0 and €.

From the mathematical viewpoint, no matter how small € is, this function is con-
tinuous. However, from the commonsense viewpoint, when € becomes small, the
function clearly becomes discontinuous — if we draw its graph, we will see an abrupt
transition.

How can we describe the difference between these two notions in general terms?
We know the mathematical definition of continuity, but how can we describe the
commonsense continuity?

What is commonsense continuity. From the commonsense viewpoint, continuity
of a function f(x) means that if a is close to b, then f(a) is close to f(b). This is not
a formal definition: instead of using a precise description in terms of the distance
d(a,b), it uses an imprecise word “close”.

A natural way to describe such imprecise (“fuzzy”) words in precise terms is to
use fuzzy logic — technique that was designed exactly for such a transition; see, e.g.,
[1,2,3,4,5, 6]. In this technique, each imprecise notion — in particular, the notion of
being close — is described by a function p(d) that assigns, to each value d = d(a,b)
of the distance, the degree 1 (d(a,b)) to which the states a and b are close.

The farther away from each other are the states, the less close they are, so the
function 1 (d) should be strictly decreasing.
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In general, implication “if A then B” means that B is true whether A is true — and
maybe in other cases as well. Thus, our degree of confidence in B should be larger
than our degree of confidence in A.

In particular, the statement “if a and b are close, then f(a) and f(b) should also
be close” implies that our degree of confidence L (d(f(a), f(b))) (that f(a) and f(b)
are close) should be larger than or equal to our degree of confidence u(d(a,b)) that
a and b are close: u(d(f(a), f(b))) > u(d(a,b)). Since the function p(d) is strictly
decreasing, this inequality is equivalent to

d(f(a),f(b)) <d(a,b). (1)

This inequality — called 1-Lipschitz property in mathematics — is thus an appropriate
description of commonsense continuity.

Definition 1. By a commonsense-continuous dynamical system, we mean a mapping
f:IR" = 1R" for which, for all a,b € R", we have d(f(a), f(D)) < d(a,b).

Comment. It is easy to check:

» that every commonsense-continuous function is also continuous in the usual
mathematical sense, and

e that a composition of two commonsense-continuous functions is also
commonsense-continuous.

3 Main Result

Definition 2. We say that the point a € IR" is a fixed point of the mapping f : IR" —
R" if f(a) = a.

Proposition 1. For each commonsense-continuous dynamical system, its set of fixed
points is a closed convex set.

Proof. Closeness is easy to prove: if we have a sequence of fixed points a, for which
f(ay) = a, and a, — a, then, due to mathematical continuity of the mapping f, we
also have f(a) = a. So, the limit of fixed points is also a fixed point.

To complete the proof, it is thus sufficient to prove convexity. Let a and b be fixed
points, i.e., f(a) =a and f(b) =b,and letc = a-a+ (1 —a)-b for some & € (0,1).
In this case, the points a, b, and c lie on the same line, with ¢ being in between a
and b, so

d(a,b) =d(a,c)+d(b,c).

Let us prove that f(c) = c.
Indeed, by the definition of commonsense continuity, we have

d(f(a),f(c)) <d(a,c).

Since f(a) = a, this means
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d(a, f(c)) < d(a,c). (1)

Similarly, we get
d(f(c), f(b)) = d(f(c),b) <d(c,b). (2)
By adding up the inequalities (1) and (2), we conclude that

d(a, f(c)) +d(f(c),b) < d(a,c) +d(c,b) = d(a,b).
On the other hand, due to the triangle inequality, we have

d(a, f(c))+d(f(c),b) = d(a,b),

thus
d(a,f(c)) +d(f(c),b) =d(a,b). (3)

So, f(c) lies on the line segment connecting a and b.
We know that d(a, f(c)) < d(a,c). We cannot have d(a, f(c)) < d(a,c), since
then, by adding (2) to this inequality, we would have

d(a, f(c))+f(f(c),b) <d(a,c) +d(c,b) = d(a,b),

and we know, from the formula (3), that the sum in the left-hand side is equal to
d(a,b). Thus, we must have d(a, f(c)) = d(a,c). So, both points ¢ and f(c) lie on
the same line segment connecting a and b, at the exact same distance from a. Hence,
indeed f(c) =c.

The proposition is proven.

4 Auxiliary Result: Predicting the Future and Reconstructing
the Past

Predicting and reconstructing the past. By definition of a dynamical system, for
each current state a, the state at the next moment of time is f(a). Similarly, the state
at the previous moment of time is equal to f~!(a), where f~! denotes the inverse
function: f~!(a) = b if and only if f(b) = a.

What does effective prediction mean. Effective prediction of the future means that
if we know the current state approximately, i.e., we only know the state a which is
close to the actual state a, then the state f(a) that we predict based on this approx-
imate knowledge should be close to the actual future state f(a) — the state that we
would have predicted if we had the full knowledge of the current state a. In other
words, effective prediction of the future means that the mapping f from the current
state to the next state must be commonsense continuous.

If the function f(a) predicting the next state is commonsense-continuous, then
predicting the next-to-next state — and any future state — is also commonsense-
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continuous, since the corresponding prediction functions f(f(a)), f(f(f(a))), ...,
are compositions of commonsense-continuous functions.
Thus, we arrive at the following definition.

Definition 3. We say that a mapping f : IR" — IR" allows effective prediction if this
mapping is commonsense-continuous.

What does effective reconstruction of the past mean. Effective reconstruction
of the past means that if we know the current state approximately, i.e., we only
know the state @ which is close to the actual state a, then the past state f~!(a) that
we reconstruct based on this approximate knowledge should be close to the actual
past state f~!(a) — the state that we would have reconstructed if we had the full
knowledge of the current state a. In other words, effective reconstruction of the past
means that the mapping f~! from the current state to the previous state must be
commonsense continuous.

If the function f~!(a) reconstructing the previous state is commonsense-
continuous, then predicting the previous-to-previous state — and any past state
— is also commonsense-continuous, since the corresponding reconstruction func-
tions f~! (f~a)), f~' (f ' (f7'(@))). ..., are compositions of commonsense-
continuous functions.

Thus, we arrive at the following definition.

Definition 4. We say that a mapping f : IR" — IR" allows effective reconstruction
of the past if its inverse f~! is commonsense-continuous.

Result. In the ideal world, we would like to be able both to effectively predict and to
effectively reconstruct the past. Unfortunately, as the following simple result shows,
for a nonlinear system, we cannot do both.

Proposition 2. If a mapping f allows both effective prediction and effective recon-
struction of the past, then this mapping is linear.

Proof. If both f and f~! are commonsense-continuous, this means that we have

d(f(a), f(b)) <d(a,b) 4)

(a,b) for all a and b. For ' = f~!(a) and b’ = f~'(b),
f(b'), thus the second inequality takes the form

d(d.b') <d(f(d),f(b)) (5)

for all @’ and &'. From (4) and (5), we conclude that d(f(a), (b)) = d(a,b) for all a
and b, i.e., that the mapping f preserves distance. It is known that all such mappings
are linear.

The proposition is proven.

and d(f~'(a), /(b)) <d
we have a = f(da’) and b =
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