Why Constraint Interval Arithmetic Works
Well: A Theorem Explains Empirical Success

Barnabas Bede, Marina Tuyako Mizukoshi, Weldon Lodwick, Martine Ceberio,
and Vladik Kreinovich

Abstract Often, we are interested in a quantity that is difficult or impossible to
measure directly, e.g., tomorrow’s temperature. To estimate this quantity, we mea-
sure auxiliary easier-to-measure quantities that are related to the desired ones by
a known dependence, and use the known relation to estimate the desired quantity.
Measurements are never absolutely accurate, there is always a measurement error,
i.e., a non-zero difference between the measurement result and the actual (unknown)
value of the corresponding quantity. In many practical situations, the only informa-
tion that we have about each measurement error is the bound on its absolute value.
In such situations, after each measurement, the only information that we gain about
the actual (unknown) value of the corresponding quantity is that this value belongs
to the corresponding interval. Thus, the only information that we have about the
value of the desired quantity is that it belongs to the range of the values of the cor-
responding function when its inputs are in these intervals. Computing this range is
one of the main problems of interval computations.

Lately, it was shown that in many cases, it is more efficient to compute the range if
we first re-scale each input to the interval [0, 1]; this is one of the main ideas behind
Constraint Interval Arithmetic. In this paper, we explain the empirical success of
this idea and even prove that, in some reasonable sense, this re-scaling is the best.

Barnabas Bede
DigiPen Institute of Technology, 9931 Willows Rd., Redmond, Washington 98052, USA,
e-mail: bbede @digipen.edu

Marina Tuyako Mizukoshi
Federal University of Goias, Brazil, e-mail: tuyako@ufg.br

Weldon Lodwick
Department of Mathematical and Statistical Sciences, University of Colorado Denver,
1201 Larimer Street, Denver, Colorado 80204, USA, e-mail: wlodwick @ gmail.com

Martine Ceberio and Vladik Kreinovich

Department of Computer Science, University of Texas at El Paso, 500 W. University
El Paso, Texas 79968, USA,

e-mail: mceberio@utep.edu, vladik @utep.edu

2 B. Bede, M. Mizukoshi, W. Lodwick, M. Ceberio, V. Kreinovich

1 Formulation of the Problem

Need for data processing. In many practical situations, we are interested in a quan-
tity y that is difficult or impossible to measure directly, such as distance to a far-
away star or tomorrow’s weather. The usual way to estimate this quantity is to find
easier-to-measure characteristics xy,. .., x, that are related to y by a known relation
y = f(x1,...,x,), measure the values of these characteristics, and use the results X;
of these measurements to estimate y as y = f(X1,...,X,).

For example, to estimate tomorrow’s temperature y at some location, we can
use the measurements of temperature, atmospheric pressure, humidity, wind speed,
etc. in this and nearby locations. Such an estimation is what is usually called data
processing.

Need to take interval uncertainty into account. Measurements are never abso-

. . def ~
lutely accurate, there is always a difference Ax = X — x between the measurement
result X and the actual (unknown) value x of the corresponding quantity. This dif-
ference is known as the measurement error. Since the measurement results Xx; are, in

general, different from the actual values x;, the value y = f(X],...,X,) obtained by
processing these measurement results is, in general, different from the desired value
y=F(x1,..., %)

In many practical situations, the only information that we have about each mea-
surement error Ax; is the upper bound A; on its absolute value: |Ax;| < A;; see,
e.g., [7]. In such situations, after the measurement, the only information that we

gain about the actual value x; is that this value belongs to the interval [x;,X;], where

def ~ _ def ~
Xx; =x;i—A;and X; = X; + A;.

For different values of x; from these intervals, we get, in general, different values
of y = f(x1,...,x,). It is therefore desirable to find the range of possible values of
y, i.e., the range

oy ={y=rf(x1,-ox) x1 € [x, %], xn € [x,, %]} (1)
Here,
y=min{f(x1,...,x,) 1 x1 € [x,X1],..., % € [x,,%a]} (2)
and
y=max{f(x1,...,X,) : X1 € [x1,%1],...,Xn € [x,,%n] }. (3)

Computing this range is one of the main problems of interval computations; see,
e.g., [1,6,5].

Constraint Interval Arithmetic and its successes. Recently, it turned out (see, e.g.,
[2, 3, 4]) that in many cases, to solve the optimizations problems (2) and (3), it is
beneficial to first perform a linear re-scaling of the variables. Specifically, instead of
the original variables x; whose range is the interval [x;,X;], it is useful to introduce

auxiliary variables
def Xi —X;

(0% - (4)

Xi—X;

Why Constraint Interval Arithmetic Works Well 3
whose range is [0, 1]. In terms of o, each original variable x; has the form
xi=x+0 (Xi—x), (5)

and thus, the value y = f(xy,...,x,) takes the form y = F(o,..., Q,), where

F(o, oy 0) S a4 00 (B —x1), ey o+ G (B —) (6)

This is one of the main ideas behind Constraint Interval Arithmetic.
Interestingly, in many cases, such a simple re-scaling improves the optimization
results.

But why? That re-scaling of the variables often helps with optimization is not sur-
prising. For example, the basic minimization method — gradient descent, when we

(k)

iteratively replace the values x;”” on the current iteration with the new values

(k+1) (k) af
X; =X - A F) " 0’
Xi |X1:X(1)7---3)‘71:)‘51)

behaves differently when we re-scale the original variables x; into new variables

def
Yi = Ci*Xi.

Of course, this does not mean that re-scaling will always help: it depends on the
optimization technique: some sophisticated optimization packages already perform
some variable re-scaling themselves, in which case additional prior re-scaling does
not make much sense. However, for less sophisticated packages — e.g., the ones that
rely on the gradient descent (at least on the early stages of optimization), the prior
re-scaling helps.

So, a natural question is: how can we explain the empirical success of re-scaling
(4)-(5)? And is this the best re-scaling we can apply — or there are better re-scalings?

What we do in this paper. In this paper, we provide answers to both questions: we
explain why re-scaling (4)-(5) works, and we show that this re-scaling is, in some
reasonable sense, optimal.

2 Scale Invariance Explains the Empirical Success of Constraint
Interval Arithmetic

Similar re-scalings naturally appear in practical situations. While in Constraint
Interval Arithmetic, re-scalings are introduced artificially, to help solve the corre-
sponding optimization problems, similar re-scalings are well known (and widely
used) in data processing.

Indeed, the use of re-scalings is related to the fact that when we process data, we
intend to deal with the actual physical quantities, but what we actually deal with are

4 B. Bede, M. Mizukoshi, W. Lodwick, M. Ceberio, V. Kreinovich

numerical values of these quantities. Numerical values depends on the choice of the
measuring unit. For example, if we replace meters with centimeters, all numerical
values get multiplied by 100: e.g., 1.7 m becomes 170 cm. In general, if we replace
the measuring unit for measuring x; by a new unit which is a; > 0 times smaller,
then instead of the original numerical value x;, we get a new value q; - x; describing
the same quantity.

For many physical quantities such as temperature or time, the numerical value
also depends on the choice of the starting point. If we select a new starting point
which is b; units earlier than the original one, then instead of each original value x;
we get a new numerical value x; + b; describing the same amount of the correspond-
ing quantity.

If we replace both the measuring unit and the starting point, then we get a gen-
eral linear re-scaling x; — a; - x; + b;. A classical example of such a re-scaling
is a transition between temperatures 7 and f¢ in Fahrenheit and Celsius scales:
tp = 1.8-1tc+32.

Under such linear transformation, an interval [x;,%;] gets transformed into an in-
terval [a,' X+ bi,a; X+ b,’].

Need for scale-invariance and permutation-invariance. Re-scalings related to
changing the measuring unit and the starting point change numerical values, but
they do not change the practical problem. The practical problem remains the same
whether we measure length in meters or in centimeters (or in inches). It is therefore
reasonable, before feeding the problem to an optimization software, to first provide
some additional re-scaling, so that the resulting re-scaled optimization problem not
depend on what measuring units and what starting point we used for our measure-
ments.

It is also reasonable to require that the resulting re-scaled optimization problem
not depend on which variable we call first, which second, etc., i.e., that it should be
invariant with respect to all possible permutations.

Let us formulate this requirement in precise terms. After the measurements, the
only information that we get are, in effect, the endpoints x; and X;. So, a strategy for
a proper additional re-scaling can use all these endpoints.

Definition 1. Let us fix an integer n.

* By a problem, we mean a tuple (f(x1,...,%),[x1,X1],.-.,[X,,Xn]), where
f(x1,...,x,) is a function and [x;,X;] are intervals.

o We say that problems (f(x1,....%),[x;, %1, [%, %)) and
(8W1s--sn) [y s3], s [y, 3al), are obtained from each other by per-
mutation if for some permutation w : {1,...,n} — {l,...,n}, we have
g(xr, . xn) = f(Xz(1)s- - Xn()) for all x; and [y,, 3] = [xy (i), Xn(p)] for all i.

o We say that problems (FOeryeeosXn), (X1, X0 5o oy [%, X0) and
(8W1s--osyn) [y s3]y o[y, s 3al), are obtained from each other by re-
scaling if for some real numbers a; > 0 and b;, we have g(yi,...,yn) =

flar-y1+bi,....an -y +by) for all y; and [y,,y;] = [a; - x;+ bi, a; - X; + b;] for
alli.

Why Constraint Interval Arithmetic Works Well 5
* By are-scaling strategy, we mean a tuple of functions
§= <P1 (Elaxla e 7-Xn7jn)7q1 (&17X1; cee 7-In7xn)7 ey

pn(llafla' "a&najn%qn(zlvxlv“' ;“Snvxn)>~

* By the result of applying a re-scaling strategy (pi,...) to a problem
(F(x1ye o yxn), [x1,%1]), - -+ [X,5 %)), we mean a problem

(f(pr-x14q1,...,Pn-Xn+qn), [P1- X1 +q1,p1 - X1 +q1), ...,

[pn Xy +qﬂvpi’l xﬂ+qn]>

o We say that the re-scaling strategy is permutation-invariant if whenever two prob-
lems are obtained from each other by permutation, the results of applying this
strategy to both problems should be obtained from each other by the same per-
mutation.

» We say that the re-scaling strategy is scale-invariant if whenever two problems
are obtained from each other by re-scaling, the results of applying this strategy
to both problems will be the same.

Comment. In particular, the re-scaling strategy corresponding to Constraint Interval
Arithmetic has the form

pi(zhjlw-'azmxn) = xi_li and ql‘(zlaxlv"-vznvxn) = _Xi_li.

Proposition 1. For each re-scaling strategy, the following two conditions are equiv-
alent to each other:

e the re-scaling strategy is permutation-invariant and scale-invariant, and
e for some values A > 0 and B, the re-scaling strategy has the form

1
Pi(&lyflyn-énjn):A‘, (7)

Xi —X;

and

C]i(éuflw-w&mfn):—A',7 +B (8)

Xi —X;

Discussion. For A = 1 and B = 0, we get the re-scaling strategy

Xi —X;
Xi—= =

Xi —X;

used in Constraint Interval Arithmetic.
In general, for a permutation- and scale-invariant strategy, the corresponding re-
scaling has the form

6 B. Bede, M. Mizukoshi, W. Lodwick, M. Ceberio, V. Kreinovich

xsA M H g 9)
Xi —X;

This re-scaling can be described as follows:

 first, we apply the re-scaling used in Constraint Interval Arithmetic, and
* then, we apply an additional re-scaling x — A - x+ B.

This result (almost) explains why the re-scaling strategy corresponding to Constraint
Interval Arithmetic is so effective. We said “almost” since it is possible to use differ-
ent values of A and B. The selection of A = 1 and B = 0 can be explained, e.g., by the
fact that this selection leads to the simplest possible expression (9), with the smallest
number of arithmetic operations needed to compute the value of this expression.

Proof of Proposition 1. One can easily check that the re-scaling strategy (7)-(8) is
permutation- and scale-invariant. Vice versa, let us prove that every permutation-
invariant and scale-invariant re-scaling strategy has the form (7)-(8).
Indeed, let us assume that we have a permutation-invariant and scale-invariant
re-scaling strategy. Then, by applying the re-scaling
Xi —X;

Xi — =)
Xi —X;

we can reduce each problem to the form in which all intervals are equal to [0, 1].

For this form, the formulas describing the given re-scaling strategy become
pi(0,1,...,0,1) and ¢;(0,1,...,0,1). In this case, permutation-invariance means
that p;(0,1,...,0,1) = pg;(0,1,...,0,1) for all permutations 7. Thus, we have
p1(0,1,...,0,1) = ... = p,(0,1,...,0,1). Let us denote the common value of all
pi(0,1,...,0,1) by A.

Similarly, we can conclude that ¢;(0,1,...,0,1) =...=¢g,(0,1,...,0,1). Let us
denote the common value of all ¢;(0,1,...,0,1) by B. Thus, for this [0, 1]-case, the
re-scaling strategy performs the same transformation x; — A - x; + B for all i. By
applying this transformation to the result of transforming the original problem into
the [0, 1]-case, we get exactly the transformation (7)-(8).

The proposition is proven.

3 Which Re-scaling Strategy Is Optimal?

What do we mean by “optimal”? Usually, optimal means that there is a numerical
characteristic that describes the quality of different alternatives, and an alternative
is optimal if it has the largest (or the smallest) value of this characteristic. However,
this description does not capture all the meanings of optimality.

For example, if we are designing a computer networks with the goal of maximiz-
ing the throughout, and several plans lead to the same throughput, this means we
can use this non-uniqueness to optimize something else: e.g., minimize the cost or

Why Constraint Interval Arithmetic Works Well 7

minimize the ecological impact. In this case, the criterion for comparing two alter-
natives is more complex than a simple numerical comparison. Indeed, in this case,
an alternative A is better than the alternative B if it either has larger throughput, or it
has the same throughput but smaller cost. We can have even more complex criteria.
The only common feature of all these criteria is that they should decide, for each
pair of alternatives A and B, whether A is better than B (we will denote this A > B),
or B is better than A (B > A), or A and B are of the same quality to the user (we will
denote this by A ~ B). This comparison must be consistent, e.g., if A is better than
B, and B is better than C, then we expect A to be better than C.

Also, as we have mentioned, if according to a criterion, there are several equally
good optimal alternatives, then we can use this non-uniqueness to optimize some-
thing else —i.e., this optimality criterion is not final. Once the criterion is final, there
should therefore be only one optimal strategy.

Finally, it is reasonable to require that which re-scaling strategy is better should
not change if we first apply some permutation to both strategies — or first apply some
re-scaling to all the variables. Thus, we arrive at the following definitions.

Definition 2.

e Let S be a set, its elements will be called alternatives. By an optimality criterion
on the set S, we mean a pair of relations (>, ~) for which:

A > BandB > CimplyA>C,

A~ BandB>CimplyA>C,
A>BandB~ CimplyA>C,
A~Band B~ Cimply A~ C, and

A > B implies that we cannot have A ~ B.

* An alternative A is called optimal with respect to criterion (>,~) if for every
B € S, we have either A > B or A ~ B.
e An optimality criterion is called final if it has exactly one optimal alternative.

Definition 3. Let
§= <P1 (llﬂxla' . 7£n7xﬂ)aql (Elvxl e 7)£n7xn)a ceey
pn()ﬁlyjl,- . alnaxn)aqfl(lhjh et aln7)?n)>
be a re-scaling strategy.
* For each permutation v : {1,...,n} — {1,...,n}, by the result 7t(s) of applying

this permutation to s, we mean the re-scaling strategy

s = <pﬂ(l)(£7r(1)ax7r(l)a s 7&7[(11)axn(n))7qn'(l)(&n(l)vxﬂ:(l)v s a&n’(n)vxﬂ:(n))v (ERE)

pﬂ,’(n) (En(])axﬂ(l)a cee 71n(n>axﬂ(n))7LIﬂ:(n) (&n’(])axﬂf(lﬁ cee 7&n(n)7x717(n))>'

o We say that the optimality criterion is permutation-invariant if for every permu-
tation T:

8 B. Bede, M. Mizukoshi, W. Lodwick, M. Ceberio, V. Kreinovich
o s> is equivalent to w(s) > n(s'), and
o s~ S isequivalent to m(s) ~ m(s).

o Foreach tuple of re-scalings t = {(ay,by,...,an,b,), by the result t(s) of applying
these re-scalings to s, we mean the following re-scaling strategy:

§= <p1(al '£1+b1,a1 'fl +b17~-aan'£n+bn,an'xn+bn)a

qi(ay-x, +bi,a1-X1+by,....an X, +by,ay %+ by),. ..,
pnlay-x; +bi,a1-X1+b1,...,an X, +by,an -Xn+by),
qn(al * X +b1,a1-% +b17~~~aan'ln+bn7an - Xn +bn)>

e We say that the optimality criterion is scale-invariant if for every tuple of re-
scalings t:

(
(

Proposition 2. For every final permutation-invariant and scale-invariant optimality
criterion, the optimal re-scaling strategy has the form (7)-(8).

"), and

o s> is equivalent to t(s) > t(s
~t(s).

t
o s~ isequivalent to t(s) ~ 1t

Discussion. Thus, re-scalings which are similar to the ones used in Constraint Inter-
val Arithmetic are indeed optimal, and not just optimal with respect to one specific
optimality criteria — they are optimal with respect to any reasonable optimality cri-
terion.

Proof of Proposition 2.

1°. Let us first prove that, in general, for any reversible transformation 7', if a final
optimality criterion is invariant with respect to this transformation, then the corre-
sponding optimal alternative aop is also invariant with respect to 7.

Indeed, the fact this alternative is optimal means that for every alternative a, we
have aope > a or agp ~ a. In particular, for every alternative a, this property is true for
the result 7~!(a) of applying the reverse transformation 7! to this alternative a. In
other words, for every alternative a, we have either aop > T~ ! (a) or aop ~ T (a).
Since the optimality criterion is T-invariant, the condition aey > 77! (a) implies
that T (aop) > T(T~!(a)) = a, and similarly, the condition agp ~ T~!(a) implies
that T (aep)simT (T~ (a)) = a.

Thus, for every alternative a, we have either 7' (aop) > a or T'(aop) ~ a. By def-
inition of the optimal alternative, this means that the alternative 7 (aop) is optimal.
We assumed that our optimality criterion is final, which means that there is only one
optimal alternative. Thus, we must have T(aopt) = aopt- In other words, the optimal
alternative aop is indeed T-invariant.

2°. In our case, the statement from Part 1 means that the optimal re-scaling strategy
is permutation- and scale-invariant. According to Proposition 1, this implies that the
optimal re-scaling strategy has the form (7)-(8). The proposition is proven.

Why Constraint Interval Arithmetic Works Well 9

Acknowledgments

This work was supported in part by the National Science Foundation grants 1623190
(A Model of Change for Preparing a New Generation for Professional Practice in
Computer Science), and HRD-1834620 and HRD-2034030 (CAHSI Includes), and
by the AT&T Fellowship in Information Technology.

It was also supported by the program of the development of the Scientific-
Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478,
and by a grant from the Hungarian National Research, Development and Innovation
Office (NRDI).

References

1. L. Jaulin, M. Kiefer, O. Didrit, and E. Walter, Applied Interval Analysis, with Examples in
Parameter and State Estimation, Robust Control, and Robotics, Springer, London, 2001.

2. W. A. Lodwick, Constrained Interval Arithmetic, University of Colorado at Denver, Center for
Computational Mathematics CCM, Report 138, February 1999.

3. W. A. Lodwick, “Interval and fuzzy analysis: An unified approach”, In: P. W. Hawkes (ed.),
Advances in Imaging and Electronic Physics, Vol. 148, Elsevier Press, 2017, pp. 75-192.

4. W. A. Lodwick and D. Dubois, “Interval linear systems as a necessary step in fuzzy linear
systems”, Fuzzy Sets and Systems, 2015, Vol. 281, pp. 227-251.

5. G. Mayer Interval Analysis and Automatic Result Verification, de Gruyter, Berlin, 2017.

6. R.E.Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval Analysis, SIAM, Philadel-
phia, 2009.

7. S. G. Rabinovich, Measurement Errors and Uncertainty: Theory and Practice, Springer Verlag,
New York, 2005.

