
Proceedings IFTE-2022, 0000-0000 

doi:10.3897/ap.2.e000 

VIII International Forum on Teacher Education  

 

From Historically First “Unary” Numbers, Through 

Egyptian Fractions, Roman Numerals, Leibniz's 

Binary Numbers and Kepler's Fractions to Modern 

Ideas Such as Calkin-Wilf Tree: A Unified Approach 

to Representing Natural Numbers and Fractions 
 

 

Olga M. Kosheleva (a), Vladik Kreinovich* (b), Christian Servin (c) 

 
(a), (b) University of Texas at El Paso, El Paso, Texas 79967, USA, olgak@utep.edu, vladik@utep.edu, 

 (c) El Paso Community College, 919 Hunter, El Paso, Texas 79915, USA, cservin@gmail.com 

   

 

Abstract 

In elementary mathematics classes, students are often overwhelmed by different representations of numbers and 

corresponding operations: usual fractions, decimal representations, binary numbers, etc. What often helps is when 

students learn the history of these representations, see the limitations of seemingly reasonable representations like 

Roman numerals, and how other representations overcame these limitations. Still, history was developed somewhat 

randomly, so the historical sequence is still somewhat chaotic. We believe that providing a unified approach for all 

these representations would help describe their sequence in a more logical way and thus, help the students even more.  

In our analysis, we explore the relation between the foundations of arithmetic, especially related definitions 

of numbers, and the resulting notations. For example, widely used Peano axioms describe natural numbers as 

containing 0 and containing, for each x, the next number x + 1. The corresponding definition naturally leads to the 

historically first representation of natural numbers as I, II, III, IIII, etc. Allowing addition and multiplication by 2 (and 

powers of 2) leads to binary numbers, allowing general multiplication to decimal numbers, etc. It turns out that a 

similar foundational description can be found for most historical representations of natural and fractions. For example, 

allowing the division of 1 by a natural number leads to Egyptian fractions, allowing generic division of integers leads 

to common fractions, etc. 

We believe that exposing students (and teachers) to at least some of these results will help them better 

understand the relation between different number representations, and thus, will make it easier for them to master the 

corresponding techniques. 
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Introduction 

In elementary mathematics classes, students are often overwhelmed by different representations of numbers 

and corresponding operations: usual fractions, decimal representations, binary numbers, etc. What often 

helps is when students learn the history of these representations, learn the limitations of seemingly 

reasonable representations like Roman numerals, and learn how other representations overcame these 

limitations.  

Still, history was developed somewhat randomly, so the historical sequence is still somewhat chaotic. We 

believe that providing a systematic unified approach for all these representations would help describe their 

sequence in a more logical way and thus, help the students even more.  

Purpose and objectives of the study 

The main purpose of this study is to provide a systematic unified approach to historical number 

representations. We believe that exposing students (and teachers) to such a unified approach will help them 

better understand the relation between different number representations, and thus, will make it easier for 

them to master the corresponding techniques. 

Literature review 

There exist many books and paper on historical number systems and number representations; see, e.g., 

(Boyer & Merzbach, 2011), (Kosheleva & Villaverde, 2018) and references therein. These books and 

papers describe different representation of numbers, describe the practical motivation for these 

representations, describe how these representations historically evolved, and what were their strengths and 

limitations.  

The problem is that most of these papers concentrated on a single historical representation – or, at best, on a 

few related historical representations. These papers do not provide a systematic unified view of different 

representations and thus, make it difficult to use several different representations when teaching students.  
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Methodology  

In our analysis, we explore the relation between the foundations of arithmetic, especially related definitions 

of numbers, and the resulting representations.  

Analysis of the problem 

A set of objects is usually described by: 

 listing basic objects and  

 listing allowed operations, operations that enable us to construct new objects.  

For numbers, this means that: 

 we list several basic numbers, and  

 we list operations that can be used to construct new numbers.  

Let us describe what types of numbers and what operations we will consider in this paper.  

In this paper, we will focus of two types of numbers:  

 non-negative integers, also known as natural numbers 0, 1, 2, …, and  

 non-negative fractions, also known as non-negative rational numbers.  

For integers, natural arithmetic operations are addition, subtraction, and multiplication – and it is also 

natural to consider powers, since a power is nothing else but a repeated multiplication. For rational 

numbers, there is an additional arithmetic operation: division.  

Addition, subtraction, and multiplication are exactly operations which are directly hardware supported in 

modern computers; see, e.g., (Knuth, 1980). To be more precise, only addition and multiplication are 

directly hardware supported, subtraction a – b is reduced to addition a + (--b) by using so-called 2’s-

complement representation of negative numbers.  

All other computations are performed, in effect, as a sequence of additions and multiplications. For 

example, when we ask a computer to compute the value of a special function like exp(x) or sin(x), the 

computer actually computes the sum of the first few terms of the corresponding Taylor series, i.e., 
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computes the value of the corresponding polynomial by performing the appropriate sequence of additions 

and multiplications.  

How is division represented in a computer? Since computers use binary numbers, the simplest division for 

computers is division by 2 – it simply shifts the binary point, similarly to how division by 10 is the easiest 

for us humans, who use decimal system. A general division a / b is implemented in a computer as the 

product a * (1 / b), where the inverse 1 / b is actually computed as a sequence of additions and 

multiplications.  

Also, in the computers, simplest special cases of addition and subtraction – namely, the operations of 

adding one and subtracting one – are usually hardware supported as separate operations, which in computer 

science are usually denoted by ++ (next integer) and -- -- (previous integer). These separate operations 

make sense: indeed, adding one is a very frequent operation corresponding to counting, and since adding 

one is much faster than the general addition, implementing adding 1 as a separate hardware supported 

operation enables us to decrease computation time.  

Let us analyze what number systems we can get if we use some of these operations. We will start with 

number systems describing natural numbers, and then move to number systems describing non-negative 

fractions. 

It is important to notice that while this way, we do describe, in a systematic way, practically all historically 

proposed number systems, the resulting systematic order in which we present these systems will be 

sometimes different from the historic order – i.e., the order in which these systems are usually represented 

in books on history of mathematics.  

What if we only use ++ to represent natural numbers: from historically first representation of 

numbers to Peano arithmetic 

Let us start with the case when, to construct new natural numbers, we use only one arithmetic operation, 

namely the simplest arithmetic operation ++ of adding 1. What basic natural numbers do we need to have in 

such a description? Since we want to represent 0, and 0 cannot be described as a natural number + 1, we 

therefore have to have 0 as one of the basic numbers. There is no need to have any other basic number: 

once we have 0, we can construct any natural number by adding an appropriate number if 1s: 1 is 0 + 1, 2 is 

0 + 1 + 1, etc.  
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This is exactly how natural numbers are described in so-called Peano arithmetic, the most well-known and 

the most widely used formal description of natural numbers:  

 0 is a natural number, and  

 if n is a natural number, then the next value – which in Peano arithmetic is usually denoted by s(n) 

– is also a natural number.  

What representation of natural numbers do we get this way? In this approach, each natural number can be 

described by listing all adding-one operations that we need to apply to 0 to get this number. If we denote 

one application of the adding-one operation by a vertical line, then numbers 1, 2, 3, 4, etc. are represented 

as, correspondingly, I, II, III, IIII, etc. This is known as the unary number system, since we use only one 

symbol to represent all natural numbers -- as opposed to, e.g., the usual decimal system where we use ten 

different symbols 0, 1, …, 9. The unary system is exactly how our ancestors counted: e.g., if they needed to 

record that someone borrowed 13 sheep, they scratched 13 lines on a stick. For small numbers, this is how 

1, 2, 3, and sometimes 4 were represented in Roman numerals – and this is how such numbers are marked 

on grandfather’s clocks.  

An important feature is that in this representation, there is exactly one way to represent a given natural 

number: namely, to represent a number n, we write down II…I, where I is repeated n times. 

What if we also use addition: Biblical numbers 

Let us recall that the simplest arithmetic operation is addition, and the ++ operation of adding one is the 

simplest particular case of this operation. In the previous section, we considered the case when we only use 

++. A limitation of this representation is that it takes too much space: e.g., to represent number 1000, we 

need to use 1000 symbols. To make representations shorter, a natural idea is to use other arithmetic 

operations. The natural next operation is full addition, 

So, instead of a single symbol, we use several symbols describing several different natural numbers, and we 

form other natural numbers by adding the given numbers. Such systems have indeed been ubiquitous in the 

ancient world. For example, to describe numbers in the Hebrew Bible, the first 9 letters of the Hebrew 

letters of the Hebrew alphabet were assigned values 1 through 9, the next 9 letters 10, 20, …, 90, then 100, 

etc. This provides for a more compact representation: e.g., we only need 3 symbols to represent the number 

144 – the symbols for 100, 40, and 4.  
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The disadvantage is that, in principle, the representation stops being unique: e.g., the number 16 can be, in 

principle, represented both as 10 + 7, and as 9 + 6, and such a 9-using representation was actually used; see, 

e.g, (Kosheleva & Kreinovich, 2019) and references therein.  

What if we also allow subtraction: Roman numerals 

To get an even more compact representation, it is reasonable to allow other operations. The simplest 

operation that we did not use was subtraction. This is how the Roman numerals were built: we start with 

symbols describing several natural numbers, such as I for 1, V for 5, X for 10, L for 50, C for 100, D for 

500, and M for 1000, and then we use addition and subtraction to represent other natural numbers.  

If a symbol for a smaller number follow the symbol for a larger number, it means addition, otherwise it 

means subtraction. For example, 144 was represented as CXLIV, which means 100 + (50 – 1) + (5 – 1).  

This system also allows several different representations for the same number: e.g., the number 4 was 

sometimes represented as IIII and sometimes as IV.  

What if we allow the simplest possible multiplication – multiplication by 2: binary numbers 

The next-in-complexity arithmetic operation is multiplication. The simplest multiplication is, of course, 

multiplication by 0 or 1, but such multiplication does not lead to any new natural numbers. The simplest 

multiplication that leads to new natural numbers is multiplication by 2. This leads to a binary number 

system, in which every natural number is represented as the sum of appropriate powers of 2, i.e., as the sum 

of numbers obtained from 1 by consequent multiplication by 2. For example, 144 = 128 + 16 = 27 + 24.  

Strictly speaking, this should be  

2 * 2 * 2 * 2 * 2 * 2 * 2 + 2 * 2 * 2 * 2, 

so, in effect, binary system uses also raising to the power – namely, the simplest case of raising to the 

power, when we only raise number 2 to different powers. 

What if we allow multiplication by several numbers: decimal numbers 

If instead of multiplying by 2, we allow multiplying by all natural numbers from 2 to 10 (and instead of 

raising 2 to different powers we raise 10 to different powers), we get our usual decimal system, where, e.g., 

144 is represented as 10 * 10 + 4 * 10 + 4 = 102 + 4 * 101 + 4 * 100.  
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This is the first example where a natural sequence differs from a historic one: decimal numbers were known 

for many centuries, since the 4th century or even earlier, while binary numbers were only introduced by 

Leibniz in the 17 century.  

How to represent fractions 

Let us now switch to describing how we can represent fractions. To represent fractions, we need to use 

division to operations describing natural numbers. As we have mentioned, in computers, division a / b is 

implanted as a * (1 / b). So, a natural idea is to use the operation 1 / b. 

What if we only allow division by 2: binary fractions 

As we have mentioned, for a computer, the simplest possible division is division by b = 2 – and also 

repeated divisions by 2, which are equivalent to dividing by the corresponding power of 2. Since we allow 

division by 2, it is reasonable to also allow similar simpler operations: multiplication by 2 and addition. 

This leads to binary fractions like 101.0112 = 22 + 1 + 1 / 22 + 1 / 23.  

What if we only allow division by 10: decimal fractions 

Instead of division by 2, we can allow division by 10. This operation is easy for us humans (as opposed to 

being easier for computers). In combination with multiplication by 10 (and multiplication by natural 

numbers smaller than 10), this leads to our usual decimal fractions, e.g.: 

21.44 = 2 * 10 + 1 + 4 / 10 + 4 / 102. 

It is important to note that if we are only interested in proper fractions, i.e., fractions smaller than 1, then 

we do not need multiplication: all we need is to start with 9 digits 1, …, 9, and allow division by 10 and 

addition. For example, 0.44 can be represented as 0.44 = 4 / 10 + 4 / 102. 

What if we allow 1 / b for all natural numbers b: Egyptian fractions  

In the previous two sections, we considered the cases when we only allow division by one specific natural 

number: b = 2 for binary fractions and b = 10 for decimal fraction. A natural next idea is to allow divisions 

by any natural number, i.e., to allow fractions of the type 1 / b, where b is an arbitrary integer.  

It turns out that if we are only interested in representing proper fractions, then any such fractions can be 

represented as the sum of numbers 1 / b of such type. For example, 2 / 3 = 1 / 2 + 1 / 6, 3 / 4 = 1 / 2 + 1 / 4, 

etc. Such representations are known as Egyptian fractions, since this is how ancient Egyptians represented 
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fractions; see, e.g., (Boyer & Merzbach, 2011), (Kosheleva & Kreinovich, 2009), (Kosheleva & Villaverde, 

2018) and references therein. 

What if we allow 1 / b for all natural numbers b and multiplications by all natural numbers: regular 

fractions 

What if, in addition to the inverse, instead of adding, we allow multiplication by any natural number? In 

this case, we get all possible fractions of the type a / b, i.e., all regular fractions like 2 / 3 or 3 / 4.  

What if we allow 1 / b for any numbers b: Kepler’s fractions 

What if we allow 1 / b for all possible numbers b? Of course, if we start with a finite list of numbers and 

only apply the operation 1 / b, then all we get is the original numbers and their inverses. So, to be able to 

represent arbitrary non-negative rational numbers, we need to allow at least one more operation.  

As we have mentioned earlier, the simplest arithmetic operation is adding 1. It turns out that if we start with 

0 and use these two operations: the inverse 1 / b and adding one, then we can represent any non-negative 

fraction. This idea was first proposed by Kepler in (Kepler, 1619). Thus, such fractions are known as 

Kepler fractions; this representation is also known as Calkin-Wilf tree.  

Interestingly, in this case we have a unique representation of each positive fraction. Indeed, if we have a 

fraction a / b and the numerator and the denominator have a common factor, then we can divide both a and 

b by this factor and get a fraction in which a and b have no common divisors. In this case, we cannot have a 

= b, so we must have either a < b or a > b. If a < b, then a / b < 1, so we cannot get this number by adding 1 

to a positive number; thus, we can get a / b by applying inverse to b / a.  

If a > b, then we can represent a / b as (a – b) / b + 1. So to represent the number a / b this way, it is 

sufficient to represent the fraction (a – b) / b. In each such transformation, the maximum of numerator and 

denominator decreases, so in finitely many steps, this procedure will stop, and we will get the desired 

representation.  

Let us illustrate this idea on the examples of fractions 3 / 4 and 5 / 13. Let us start with 3 / 4. Since 3 / 4 < 1, 

we represent it as 1 / (4 / 3). Here, 4 / 3 = 1 / 3 + 1, i.e., 1 / (1 + 1 + 1) + 1. Thus,  

3 / 4 = 1 / (1 / (1 + 1 + 1) + 1). 

For 5 / 13, we similarly have 5 / 13 = 1 / (13 / 5). Here, 13 / 5 = 8 / 5 + 1, and 8 / 5 = 3 / 5 + 1, so  
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13 / 5 = 3 / 5 + 1 + 1. 

In this case, 3 / 5 = 1 / (5 / 3), where 5 / 3 = 2 / 3 + 1.  In its turn, 2 / 3 = 1 / (3 / 2), where 3 / 2 = 1 / 2 + 1, 

i.e., 3 / 2 = 1 / (1 + 1) + 1.  So, 2 / 3 = 1 / (1 / (1 + 1) + 1), 5 / 3 = 1 / (1 + 1 / (1 + 1)) + 1, thus 

3 / 5 = 1 / (1 / (1 / (1 + 1) + 1) + 1),  

13 / 5 = 1 / (1 / (1 / (1 + 1) + 1) + 1) + 1 + 1, and  

5 / 13 = 1 / (1 / (1 / (1 / (1 + 1) + 1) + 1) + 1 + 1). 

Similar to Peano arithmetic, we can therefore describe non-negative rational numbers as follows: 

 0 is a non-negative rational number; 

 if a is a non-negative rational number, then a + 1 is a non-negative rational number, and  

 if a is a non-negative rational number different from 0, then 1 / a is a non-negative rational 

number. 
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