
Efficient Algorithms for Data Processing under

Type-3 (and Higher) Fuzzy Uncertainty

Vladik Kreinovich1, Olga Kosheleva1,
Patricia Melin2, and Oscar Castillo2

1University of Texas at El Paso, 500 W. University,
El Paso, Texas 79968, USA, olgak@utep.edu, vladik@utep.edu

2Tijuana Institute of Technology, Tomas Aquino,
Baja California, Mexico,

pmelin@tectijuana.mx, ocastillo@tectijuana.mx

Abstract

It is known that to more adequately describe expert knowledge, it is
necessary to go from the traditional (type-1) fuzzy techniques to higher
order ones: type-2, probably type-3 and even higher. Until recently, only
type-1 and type-2 fuzzy sets were used in practical applications. However,
lately, it turned out that type-3 fuzzy sets are also useful in some appli-
cations. Because of this practical importance, it is necessary to design
efficient algorithms for data processing under such type-3 (and higher or-
der) fuzzy uncertainty. In this paper, we show how we can combine known
efficient algorithms for processing type-1 and type-2 uncertainty to come
up with a new algorithm for the type-3 case.

1 Outline

Usual data processing algorithms treat data points as if they were exact. In
practice, data comes with uncertainty. When data comes from experts who
describe their knowledge by using imprecise (“fuzzy”) words from natural lan-
guage, a natural way to describe the corresponding uncertainty is to use fuzzy
techniques. To get a more accurate representation of expert uncertainty, it is
necessary to use higher-order fuzzy techniques, i.e., go from the usual [0, 1]-based
type-1 techniques to type-2, type-3, and maybe even higher types. In this pa-
per, we describe efficient algorithms for data processing under such higher-order
fuzzy uncertainty.

The structure of this paper is as follows. In Section 2, we recall the need for
data processing. In Section 3, we recall the need for fuzzy techniques and for
higher-order fuzzy techniques. In Sections 4, 5, and 6, we recall how data can be
processed under type-1, interval type-2, and general type-2 fuzzy uncertainty.

1



Finally, in Section 7, we use these known results to come up with new efficient
algorithms for data processing under type-3 and higher order fuzzy uncertainty.

2 Why Data Processing

One of the main objectives of science is to describe the current state of the world
– and to predict its future state. One of the main objectives of engineering is
to design new buildings, gadgets, and/or new algorithms to make this future
better. To describe the state of the world – and to describe the engineered
objects – we need to list the numerical values of the quantities that characterize
different natural and artificial objects.

Some quantities we can simply measure: we can directly measure the tem-
perature outside, we can directly measure the distance between the two nearby
buildings, etc. However, many quantities we cannot measure directly: e.g., we
cannot directly measure the distance to a faraway star or the amount of oil in
a given oilfield. And it is definitely not possible to directly measure the fu-
ture state – e.g., future temperature. To estimate such a difficult-to-measure
quantity y, a natural idea is to find easier-to-measure-or-estimate quantities
x1, . . . , xn that are related to the desired quantity y by a known dependence
y = f(x1, . . . , xn). Then, we can measure or estimate the quantities xi, and use
the results ỹ of measurement or estimation to estimate y as ỹ = f(x̃1, . . . , x̃n).

Computing this estimate, i.e., applying the algorithm f(x1, . . . , xn) to the
results of measurements and/or expert estimations is what is usually called data
processing.

3 Need for Fuzzy Uncertainty and Need for
Higher-Order Fuzzy Uncertainty

Need for fuzzy uncertainty. Often, estimates for xi come from experts, and
experts rarely provide exact values. Expert knowledge is usually formulated by
using imprecise (“fuzzy”) words from natural language. An experienced driver
explaining his/her driving strategy will not say that in a certain situation, you
need to show down by exactly 5.0 km/h, he/she will probably say “slow down
a little bit”, or “slow down by about 5 km/h”.

We want to use this imprecise knowledge in computer-related data process-
ing. The challenge is that computers were designed to process numbers, not
words from natural language. So, we need to transform expert statements into
computer-understandable numerical form. For this purpose, Lotfi Zadeh in-
vented fuzzy techniques (see, e.g., [1, 7, 12, 14, 15, 16]), where each imprecise
term like “small” is described by assigning, to each possible value x of the cor-
responding quantity, the degree m(x) – from the interval [0, 1] – to which, ac-
cording to the expert, this value is small. The resulting function m(x) is known
as the membership function or, alternatively, as the fuzzy set. This original idea
is also called type-1 fuzzy techniques.

2



Fuzzy numbers. For most terms, the membership function first (non-strictly)
increases then (non-strictly) decreases. Such membership functions are known
as fuzzy numbers.

“And”- and “or”-operations (t-norms and t-conorms). Expert rules
often involve logical connectives like “and” and “or”. For example, a rule can
say that if a car in front of you is close and it slows down a little bit, then you
should break a little bit. Strictly speaking, in this case, we need to find out,
for each pair consisting of a distance value and a change-in-velocity value, the
degree to which, for this pair, the condition “a car in front of you is close and
it slows down a little bit” is satisfied. In this case, we may be able to do it,
but, e.g., in medicine, we have rules with 5 or 6 different conditions. Even if we
try only 10 values for each of the 5-6 variables, this still means asking 105 to
106 questions to an expert – this is not feasible. In such situations, to estimate
the degree of confidence in a composite statement A&B or A ∨ B, the only
information we have is the expert’s degrees of confidence a and b in the original
statements A and B.

The algorithm f&(a, b) that estimates the degree of confidence in A&B
based on this information is known as an “and”-operation or, for historical
reason, a t-norm. Similarly, the algorithm f∨(a, b) that estimates the degree of
confidence in A∨B based on this information is known as an “or”-operation or,
for historical reason, a t-conorm. The simplest – and frequently used – “and”-
and “or”-operations are f&(a, b) = min(a, b) and f∨(a, b) = max(a, b).

Need for type-2 fuzzy technique. The challenge with type-1 fuzzy technique
is that similarly to the fact that an expert cannot name the exact value of the
quantity, the same expert cannot produce the exact degree m(x). At best, the
expert can provide an interval of possible values of this degree – e.g., [0.6, 0.7] –
or even a fuzzy statement like “the degree is close to 0.6”. So, a natural idea is
to allow the degree m(x) to be an interval – which leads to interval-valued fuzzy
sets – or even a fuzzy number corresponding to a statement like “the degree is
close to 0.6” – this leads to so-called type-2 fuzzy sets.

In general, an interval [x, x] can be viewed as a fuzzy set – the degree of
confidence is 1 for all the values inside this interval and 0 for all the values
outside this interval. Thus, interval-values fuzzy sets are particular cases of
type-2 fuzzy sets.

In the interval-valued case, the expert-generated degree of confidence is an
interval m(x) = [m(x),m(x)]. In the general type-2 case, for each number t
from the interval [0, 1], the expert provides a degree to which this number t is
a degree of confidence that x has the desired property (like “small”). We will
denote this degree by m(x, t).

Need for type-3 and higher-order fuzzy techniques. Similarly to the fact
that an expert cannot describe his/her degree of confidence – that x is small – by
a single number, the same expert cannot describe his/her degree of confidence
that t is a degree of confidence that x is small by a single number. At best,
the expert can provide either an interval [m(x, t),m(x, t)] or a fuzzy number

3



that describes this degree of confidence. The fuzzy case is known as type-3 fuzzy
technique, and the interval-valued case is known as interval type-3.

In the general type-3 case, for each value s from the interval [0, 1], we provide
a degree – denoted by m(x, t, s) – that s is degree of confidence in the statement
“t is a degree of confidence that x has the desired property”.

Is this worth considering? At first glance, the difference between type-2 and
type-3 is so subtle and complicated that one can doubt whether it is necessary
to use type-3 in practical applications. Actually, people doubted that type-2
would be practically useful – and it turned out that it is often useful; see, e.g.,
[12]. Similarly, it turned out that type-3 techniques are also useful in many
practical cases; see, e.g., [2, 3, 4, 5] and references therein.

What about higher order types? Clearly, an expert cannot provide the
exact degreem(x, t, s), so a natural idea is to allow an expert to provide interval-
valued of fuzzy degrees – which leads to type-4, where for each real number r
from the interval [0, 1], we ask the expert to describe his/her degree of confidence
m(x, t, s, r) that r is a proper value of m(x, t, s).

The expert cannot describe the precise value of m(x, t, s, r), so this value
can also be fuzzy – we get type-5, etc.

Need for data processing under such uncertainty. Since type-1, type-
2, and type-3 fuzzy techniques are practically useful, it is desirable to develop
efficient algorithms for data processing under such uncertainty. Efficient algo-
rithms for type-1 and type-2 are known – we describe them in the following
sections. Efficient algorithms for type-3 case are described in the last section of
this paper.

We do not know yet whether type-4, type-5, etc., will be practically useful,
but the fact that type-2 and type-3 turned out to be useful makes us think that
it is quite probable that higher-order fuzzy sets will be useful. So it makes sense
to think of efficient algorithms for these cases too, and this is what we will do
in the same last section.

4 Data Processing under Type-1 Fuzzy Uncer-
tainty: Reminder

Formulation of the problem: reminder.

� We know that the quantity-of-interest y is a function y = f(x1, . . . , xn) of
several auxiliary quantities x1, . . . , xn.

� We also know, for each i, the membership function mi(xi) that describes,
for each real number xi, the degree to which this number is a possible
value of the i-th input.

Based on this information, we want to describe, for each real number y, the
degree m(y) to which this number is a possible value of the quantity of interest.

4



Zadeh’s extension principle: derivation and the resulting formula.
A value y is possible if y = f(x1, . . . , xn) for some possible values xi. We
know the degree mi(xi) to which each value xi is possible. We can therefore
use the min “and”-operation to describe, for each tuple (x1, . . . , xn) for which
y = f(x1, . . . , xn), the degree to which all its values are possible – i.e.. x1 is
possible and x2 is possible, etc. – as min(m1(x1), . . . ,mn(xn)).

The value y if possible if either the first tuple (x1, . . . , xn) for which y =
f(x1, . . . , xn) is possible, or the second such tuple is possible, etc. We can
therefore us the max “or”-operation to estimate the degree to which y is possible
as

m(y) = sup{min(m1(x1), . . . ,mn(xn)) : y = f(x1, . . . , xn)}. (1)

This formula was first described by Zadeh himself and is therefore known as
Zadeh’s extension principle.

How to actually compute this formula: analysis of the problem.
Straightforward computation of the formula (1) requires solving a complex
constraint optimization problem – which is, in general, time-consuming. It
is known, however, that there are more efficient ways to compute m(y). These
ways are related to the notion of α-cuts of a fuzzy sets, which are defined, for
each α ∈ (0, 1], as {x : m(x) ≥ α}. For fuzzy numbers, each α-cut is an interval;
we will denote it by x(α) = [m(α),m(α)].

For α = 0, we can use a slightly different formulation of the α-cut: it the
closure x(0) = {x : m(x) > 0} of the set {x : m(x) > 0}. In the following text,
for simplicity, we will only list the simpler formula which is valid for α > 0, but,
of course, for α = 0, we have to use the more complex formula.

Once we know all the α-cuts, we can reconstruct the membership function
as m(x) = sup{α : x ∈ x(α)}. In particular, if we know α-cuts for α =
0, 0.1, 0.2, . . . , 1.0, then we can reconstruct m(x) with accuracy 0.1 – which is
usually sufficient, since experts rarely produce their degree of confidence with
higher accuracy. So, to find m(y), it is sufficient to find the α-cuts y(α) for the
corresponding 11 values α.

Because of the possibility to easily move from the usual representation of the
membership function m(x) and its α-cut representation, sometime the member-
ship function is stored by listing the corresponding α-cuts.

To find the α-cuts corresponding to the desired quantity y, we can take
into account that the value m(y) as described by the formula (1) is larger than
or equal to α if and only if for one of the tuples (x1, . . . , xn) for which y =
f(x1, . . . , xn), we have min(m1(x1), . . . ,mn(xn)) ≥ α. This inequality, in its
turn, is equivalent to requiring that mi(xi) ≥ α for all i. Thus, the α-cut for y
is equal to the range of the function y = f(x1, . . . , xn) when each xi is in the
corresponding α-cut:

y(α) = f(x1(α), . . . ,xn(α)), (2)

where for each sets X1, . . . , Xn, the range f(X1, . . . , Xn) is defined as

f(X1, . . . , Xn)
def
= {f(x1, . . . , xn) : x1 ∈ X1, . . . , xn ∈ Xn}. (3)

5



The problem of computing the range of a function when each input is in
a known interval is known as the problem of interval computations; there are
efficient general algorithms for estimating this range, see, e.g., [6, 10, 11, 13]

Comment. In some important cases, interval computation is easy, no general
complex algorithms are needed. For example, if the function f(x1, . . . , xn) is
(non-strictly) increasing in each of its variables, then the smallest value of this
function on intervals Xi = [xi, xi] is attained when each input xi is the smallest,
i.e., when xi = xi for all i. Similarly, the largest value of this function on
intervals Xi = [xi, xi] is attained when each input xi is the largest, i.e., when
xi = xi for all i. Thus,

f([x1, x1], . . . , [xn, xn]) = [f(x1, . . . , xn), f(x1, . . . , xn)].

Resulting algorithm.

� First, if the information about the inputs xi is stored in the form of the
usual membership functions mi(xi), we compute, for each i and for each
value α ∈ {0, 0.1, . . . , 1.0}, the corresponding α-cut

xi(α) = {xi : mi(xi) ≥ α}.

(Recall that for α = 0, we will have to use a slightly more complex for-
mula.)

� Then, for each value α from the above list, we use an interval computation
algorithm to compute the range y(α) = f(x1(α), . . . ,xn(α)). These ranges
form the α-cut representation of the desired membership function m(y).

� Finally, if we want to represent this membership function in the usual
form, we compute m(y) = max{y : y ∈ y(α)}.

How many computation steps do we need. These computations need to
be repeated for all α. So, if we use 11 values α = 0, 0.1, . . . , 1.0, then, to find
the result of data processing under type-1 fuzzy uncertainty, we need to apply
an interval computations algorithm 11 times.

5 Data Processing under Interval-Valued Fuzzy
Uncertainty: Reminder

Formulation of the problem. In the interval-valued case, the relation be-
tween m(y) and mi(xi) is described by the same formula (1); the main difference
is that now, values m(y) and mi(xi) are not numbers but intervals.

The corresponding efficient algorithms are described in [8, 9].

Interval case: analysis of the problem. In the interval case, each value
mi(xi) is an interval [mi(xi),mi(xi)]. The right-hand side of the formula (1)

6



is a non-strictly increasing function of all the values mi(xi). Thus, the desired
range is equal to [m(y),m(y)], where

m(y) = sup{min(m1(x1), . . . ,mn(xn)) : y = f(x1, . . . , xn)} and

m(y) = sup{min(m1(x1), . . . ,mn(xn)) : y = f(x1, . . . , xn)}.

These are exactly formulas (1) for membership functions mi(xi) and mi(xi).
So, to compute each of the two bounds m(y) and m(y), we can use the efficient
α-cut-based algorithm.

Interval case: resulting algorithm. We are given interval-valued member-
ship functions [mi(xi),mi(xi)].

� Based on each of these membership functions, for each i and for each value
α from the given list, we compute the orrepsonding α-cuts as:

xi(α) = {xi : mi(xi) ≥ α} and xi(α) = {xi : mi(xi) ≥ α}.

� We compute the α-cuts y(α) and y(α) for the endpoints m(y) and m(y)
of the interval-valued membership function [m(y),m(y)] as follows:

y(α) = f(x1(α), . . . ,xn(α)) and y(α) = f(x1(α), . . . ,xn(α)).

� Finally, the compute the endpoints m(y) and m(y) of the desired interval-
valued membership function [m(y),m(y)] as

m(y) = max{y : y ∈ y(α)} and m(y) = max{y : y ∈ y(α)}.

How many computation steps do we need. These computations need to
be repeated for all α. So, if we use 11 values α = 0, 0.1, . . . , 1.0, then, to find
the result of data processing under type-2 fuzzy uncertainty, we need to apply
an interval computations algorithm 2 · 11 = 22 times.

6 Data Processing under General Type-2 Fuzzy
Uncertainty: Reminder

Formulation of the problem. In the general type-2 case, the relation between
m(y) and mi(xi) is described by the same formula (1); the main difference is
that now, values m(y) and mi(xi) are not numbers but fuzzy sets.

The corresponding efficient algorithms are described in [8, 9].

General type-2 case: analysis of the problem. In the general type-2 case,
m(y) and mi(xi) are fuzzy numbers. In this case, we can use the general type-
1 result that the processing of fuzzy numbers is equivalent to computing the
ranges of the processing function on different α-cuts. In this case, the data
processing is described by the formula (1).

7



To distinguish α-cuts of the original membership functions for xi and y and
the α-cuts of each fuzzy number m(y) and mi(xi), we will use the letter β for
the new alpha-cuts. Thus, we get the following for each β:

m(y)(β) = sup{min(m1(x1)(β), . . . ,mn(xn)(β)) : y = f(x1, . . . , xn)},

where

m(y)(β)
def
= {t : m(y, t) ≥ β} and mi(xi)(β)

def
= {t : mi(xi, t) ≥ β}.

For fuzzy numbers, β-cuts are intervals, and the corresponding relation (1)
is increasing. Thus, the above formula means that to get the lower endpoint
m(y)(β) of a y’s β-cut, we need to use only lower endpoints for β-cuts for xi,
and similarly for the upper endpoints:

m(y)(β) = sup{min(m1(x1)(β), . . . ,mn(xn)(β)) : y = f(x1, . . . , xn)} and

m(y)(β) = sup{min(m1(x1)(β), . . . ,mn(xn)(β)) : y = f(x1, . . . , xn)}.

Each of these formulas is, in effect, Zadeh’s extension principle for the corre-
sponding membership functions. Thus, there formulas can be reformulated in
terms of α-cuts of the corresponding membership functions:

y(α, β) = f(x1(α, β), . . . ,xn(α, β)) and

y(α, β) = f(x1(α, β), . . . ,xn(α, β)),

where

y(α, β)
def
= {y : m(y)(β) ≥ α}, xi(α, β)

def
= {xi : mi(xi)(β) ≥ α},

y(α, β)
def
= {y : m(y)(β) ≥ α}, xi(α, β)

def
= {xi : mi(xi)(β) ≥ α}.

Hence, we arrive at the following algorithm:

General type-2 case: resulting algorithm. We start with type-2 member-
ship functions mi(xi, t).

� First, for each i and for each value β from the given list, we compute the
β-cuts

[mi(xi)(β),mi(xi)(β)]
def
= {t : mi(xi, t) ≥ β}.

� Then, for each i and for each pair of values (α, β) from the given list, we
compute the α-cuts

xi(α, β)
def
= {xi : mi(xi)(β) ≥ α} and xi(α, β)

def
= {xi : mi(xi)(β) ≥ α}.

� For each α and β, we then use an interval computation algorithm to
compute:

y(α, β) = f(x1(α, β), . . . ,xn(α, β)) and

y(α, β) = f(x1(α, β), . . . ,xn(α, β)).

8



� Based on these intervals, for each β, we compute

m(y)(β) = sup{α : y ∈ y(α, β)} and m(y)(β) = sup{α : y ∈ y(α, β)}.

� Finally, we compute the desired membership function

m(y, t) = max{β : t ∈ [m(y)(β),m(y)(β)]}.

How many computation steps do we need. These computations need to
be repeated for all α and β. So, if for each of these two parameters, we use 11
values α, β = 0, 0.1, . . . , 1.0, then, to find the result of data processing under
type-2 fuzzy uncertainty, we need to apply an interval computations algorithm
2 · 112 = 242 times.

7 Data Processing under Type-3 (and Higher
Order) Fuzzy Uncertainty: A New Algorithm

Formulation of the problem. Let us show the above type-2 algorithms can
be used to come with an efficient algorithm for the type-3 case.

Type-3 case: analysis of the problem. In the type-3 case, each value m(y)
and mi(xi) is a type-2 fuzzy set. Thus, we have the relation (1) between these
type-2 fuzzy sets. So, based on the algorithm presented in the previous section,
for each pair of values β and γ from the interval [0, 1], we have:

m(y)(β, γ) =

sup{min(m1(x1)(β, γ), . . . ,mn(xn)(β, γ)) : y = f(x1, . . . , xn)} (4)

and
m(y)(β, γ) =

sup{min(m1(x1)(β, γ), . . . ,mn(xn)(β, γ)) : y = f(x1, . . . , xn)}, (5)

where

m(y)(β, γ) = [m−(y)(β, γ),m+(y)(β, γ)]
def
= {t : m(y, t)(γ) ≥ β},

mi(xi)(β, γ) = [m−
i (xi)(β, γ),m

+
i (xi)(β, γ)]

def
= {t : mi(xi, t)(γ) ≥ β},

m(y)(β, γ) = [m−(y)(β, γ),m+(y)(β, γ)]
def
= {t : m(y, t)(γ) ≥ β},

mi(xi)(β, γ) = [m−
i (xi)(β, γ),m

+
i (xi)(β, γ)]

def
= {t : mi(xi, t)(γ) ≥ β},

and
[m(y, t)(γ),m(y, t)(γ)]

def
= {s : m(y, t, s) ≥ γ},

[mi(xi, t)(γ),mi(xi, t)(γ)]
def
= {s : mi(xi, t, s) ≥ γ}.

9



The corresponding transformation (1) is non-strictly increasing, thus the formu-
las (4) and (5) lead to similar relations between endpoints of the corresponding
intervals:

m−(y)(β, γ) =

sup{min(m−
1 (x1)(β, γ), . . . ,m

−
n (xn)(β, γ)) : y = f(x1, . . . , xn)}, (6)

m+(y)(β, γ) =

sup{min(m+
1 (x1)(β, γ), . . . ,m

+
n (xn)(β, γ)) : y = f(x1, . . . , xn)}, (7)

m−(y)(β, γ) =

sup{min(m−
1 (x1)(β, γ), . . . ,m

−
n (xn)(β, γ)) : y = f(x1, . . . , xn)}, (8)

m+(y)(β, γ) =

sup{min(m+
1 (x1)(β, γ), . . . ,m

+
n (xn)(β, γ)) : y = f(x1, . . . , xn)}. (9)

Each of the formulas (6)–(9) is, in effect, Zadeh’s extension principle for the
corresponding membership functions. Thus, there formulas can be reformulated
in terms of α-cuts of the corresponding membership functions:

y−(α, β, γ) = f(x−
1 (α, β, γ), . . . ,x

−
n (α, β, γ)),

y+(α, β, γ) = f(x+
1 (α, β, γ), . . . ,x

+
n (α, β, γ)),

y−(α, β, γ) = f(x−
1 (α, β, γ), . . . ,x−

n (α, β, γ)),

y+(α, β, γ) = f(x+
1 (α, β, γ), . . . ,x+

n (α, β, γ)),

where

y−(α, β, γ)
def
= {y : m−(y)(β, γ) ≥ α}, x−

i (α, β, γ)
def
= {xi : m

−
i (xi)(β, γ) ≥ α},

y+(α, β, γ)
def
= {y : m+(y)(β, γ) ≥ α}, x+

i (α, β, γ)
def
= {xi : m

+
i (xi)(β, γ) ≥ α},

y−(α, β, γ)
def
= {y : m−(y)(β, γ) ≥ α}, x−

i (α, β, γ)
def
= {xi : m

−
i (xi)(β, γ) ≥ α},

y+(α, β, γ)
def
= {y : m+(y)(β, γ) ≥ α}, x+

i (α, β, γ)
def
= {xi : m

+
i (xi)(β, γ) ≥ α}.

Hence, we arrive at the following algorithm.

Type-3 case: resulting algorithm. We start with type-3 membership func-
tions mi(xi, t, s).

� First, for every i and for all γ from the selected list of values, we compute:

[mi(xi, t)(γ),mi(xi, t)(γ)]
def
= {s : mi(xi, t, s) ≥ γ}.

� Then, for each i, β, and γ, we compute:

[m−
i (xi)(β, γ),m

+
i (xi)(β, γ)]

def
= {t : mi(xi, t)(γ) ≥ β} and

[m−
i (xi)(β, γ),m

+
i (xi)(β, γ)]

def
= {t : mi(xi, t)(γ) ≥ β}.

10



� Then, for each i, α, β, and γ, we compute

x−
i (α, β, γ)

def
= {xi : m

−
i (xi)(β, γ) ≥ α},

x+
i (α, β, γ)

def
= {xi : m

+
i (xi)(β, γ) ≥ α},

x−
i (α, β, γ)

def
= {xi : m

−
i (xi)(β, γ) ≥ α},

x+
i (α, β, γ)

def
= {xi : m

+
i (xi)(β, γ) ≥ α}.

� For each α, β, and γ, we then use an interval computation algorithm to
compute:

y−(α, β, γ) = f(x−
1 (α, β, γ), . . . ,x

−
n (α, β, γ)),

y+(α, β, γ) = f(x+
1 (α, β, γ), . . . ,x

+
n (α, β, γ)),

y−(α, β, γ) = f(x−
1 (α, β, γ), . . . ,x−

n (α, β, γ)),

y+(α, β, γ) = f(x+
1 (α, β, γ), . . . ,x+

n (α, β, γ)).

� Next, for each y, β, and γ, we compute

m−(y)(β, γ) = max{α : y ∈ y−(α, β, γ)},

m+(y)(β, γ) = max{α : y ∈ y+(α, β, γ)},

m−(y)(β, γ) = max{α : y ∈ y−(α, β, γ)},

m+(y)(β, γ) = max{α : y ∈ y+(α, β, γ)}.

� For each y, t, and γ, we compute

m(y, t)(γ) = max{β : t ∈ [m−(y)(β, γ),m+(y)(β, γ)]} and

m(y, t)(γ) = max{β : t ∈ [m−(y)(β, γ),m+(y)(β, γ)]}.

� Finally, for all y, t and s, we compute

m(y, t, s) = max{γ : s ∈ [m(y, t)(γ),m(y, t)(γ)]}.

What about higher order fuzzy sets? In this section, we showed how
processing type-2 fuzzy information can be used to processing type-2 fuzzy in-
formation. This reduction was based on the fact that in the type-3 case, each
value m(y) and mi(xi) is a type-2 fuzzy set. Thus, we have the relation (1)
between these type-2 fuzzy sets.

Similarly, in the type-4 case, each value m(y) and mi(xi) is a type-3 fuzzy
set. Thus, we have the relation (1) between these type-3 fuzzy sets – and we
can use the above algorithm to process these values. Similarly, for every level
L, in the type-L case, each value m(y) and mi(xi) is a type-(L − 1) fuzzy set.
Thus, we have the relation (1) between these type-(L− 1) fuzzy sets. This way,

11



we can reduce processing type-L fuzzy sets to processing type-(L − 1) fuzzy
sets; similarly, we can reduce processing type-(L − 1) fuzzy sets to processing
type-(L−2) fuzzy sets, etc., until we get to the known algorithms for processing
type-1 and type-2 fuzzy sets.

How many computational steps do we need. The only (minor) problem
with processing type-3 and higher-order fuzzy sets is that as we go to higher
and higher order, the computational complexity increases. Indeed:

� For type-1, for each y, the desired information m(y) consists of a single
number. In this case, if we use 11 values of α, we need to use an interval
computation algorithm 11 times.

� For type-2, for each y, we need to find the values m(y, t) corresponding to
different values t ∈ [0, 1]. If we use 11 values for t, we thus need at least 11
times more computations than in the type-1 case – and indeed, we need
order of 11 ·11 calls to an interval computation algorithm – namely, 2 ·112
calls.

� For type-3, for each y, we need to find the values m(y, t, s) corresponding
to different values t, s ∈ [0, 1]. If we use 11 values of each of the variables
t and s, we thus need at least 112 times more computations than in the
type-1 case – and indeed, we need order of 112 · 11 == 113 calls to an
interval computation algorithm – namely, 22 · 113 calls.

� In general, for type-L, for each y, we need to find the values
m(y, t1, . . . , tL−1) corresponding to different values t1, . . . , tL−1 ∈ [0, 1].
If we use 11 values for each of the variables ti, we thus need at least 11L−1

times more computations than in the type-1 case – and indeed, as one can
show by induction over L, we need order of 11L−1 · 11 = 11L calls to an
interval computation algorithm – namely, 2L−1 · 11L calls.

Acknowledgments

This work was supported in part by the National Science Foundation grants
1623190 (A Model of Change for Preparing a New Generation for Professional
Practice in Computer Science), and HRD-1834620 and HRD-2034030 (CAHSI
Includes), and by the AT&T Fellowship in Information Technology.

It was also supported by the program of the development of the Scientific-
Educational Mathematical Center of Volga Federal District No. 075-02-2020-
1478, and by a grant from the Hungarian National Research, Development and
Innovation Office (NRDI).

References

[1] R. Belohlavek, J. W. Dauben, and G. J. Klir, Fuzzy Logic and Mathematics:
A Historical Perspective, Oxford University Press, New York, 2017.

12



[2] O. Castillo, J. Castro, and P. Melin, Interval Type-3 Fuzzy Systems: Theory
and Design, Springer, Cham, Switzerland, 2022.

[3] O. Castillo, J. Castro, and P. Melin, “A methodology for building inter-
val type-3 fuzzy systems based on the principle of justifiable granularity”,
International Journal of Intelligent Systems, 2022, doi 10.1002/int.22910

[4] O. Castillo, J. Castro, and P. Melin, “Interval type-3 fuzzy aggregation of
neural networks for multiple time series prediction: the case of financial
forecasting”, Axioms, 2022, Vol. 11, Paper 251.

[5] O. Castillo, J. Castro, and P. Melin, “Interval type-3 fuzzy control for
automated tuning of image quality in televisions”, Axioms, 2022, Vol. 11,
Paper 276.

[6] L. Jaulin, M. Kiefer, O. Didrit, and E. Walter, Applied Interval Analysis,
with Examples in Parameter and State Estimation, Robust Control, and
Robotics, Springer, London, 2001.

[7] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper
Saddle River, New Jersey, 1995.

[8] V. Kreinovich, “From processing interval-valued fuzzy data to general type-
2: towards fast algorithms”, Proceedings of the IEEE Symposium on Ad-
vances in Type-2 Fuzzy Logic Systems T2FUZZ’2011, part of the IEEE
Symposium Series on Computational Intelligence, Paris, France, April 11–
15, 2011, pp. ix–xii.

[9] V. Kreinovich and G. Xiang, “Towards fast algorithms for processing type-
2 fuzzy data: extending Mendel’s algorithms from interval-valued to a more
general case”, Proceedings of the 27th International Conference of the North
American Fuzzy Information Processing Society NAFIPS’2008, New York,
New York, May 19–22, 2008.

[10] B. J. Kubica, Interval Methods for Solving Nonlinear Contraint Satisfac-
tion, Optimization, and Similar Problems: from Inequalities Systems to
Game Solutions, Springer, Cham, Switzerland, 2019.

[11] G. Mayer, Interval Analysis and Automatic Result Verification, de Gruyter,
Berlin, 2017.

[12] J. M. Mendel, Uncertain Rule-Based Fuzzy Systems: Introduction and New
Directions, Springer, Cham, Switzerland, 2017.

[13] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval
Analysis, SIAM, Philadelphia, 2009.

[14] H. T. Nguyen, C. L. Walker, and E. A. Walker, A First Course in Fuzzy
Logic, Chapman and Hall/CRC, Boca Raton, Florida, 2019.

13



[15] V. Novák, I. Perfilieva, and J. Močkoř, Mathematical Principles of Fuzzy
Logic, Kluwer, Boston, Dordrecht, 1999.

[16] L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8, pp. 338–
353.

14


