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Abstract: It is known that to more adequately describe expert knowledge, it is necessary to go 1

from the traditional (type-1) fuzzy techniques to higher order ones: type-2, probably type-3 and 2

even higher. Until recently, only type-1 and type-2 fuzzy sets were used in practical applications. 3

However, lately, it turned out that type-3 fuzzy sets are also useful in some applications. Because of 4

this practical importance, it is necessary to design efficient algorithms for data processing under such 5

type-3 (and higher order) fuzzy uncertainty. In this paper, we show how we can combine known 6

efficient algorithms for processing type-1 and type-2 uncertainty to come up with a new algorithm 7

for the type-3 case. 8

Keywords: fuzzy techniques, type-2 fuzzy sets, type-3 fuzzy sets, data processing, Zadeh’s extension 9

principle, efficient algorithms 10

1. Outline 11

Usual data processing algorithms treat data points as if they were exact. In practice, 12

data comes with uncertainty. When data comes from experts who describe their knowledge 13

by using imprecise (“fuzzy”) words from natural language, a natural way to describe the 14

corresponding uncertainty is to use fuzzy techniques. To get a more accurate representation 15

of expert uncertainty, it is necessary to use higher-order fuzzy techniques, i.e., go from the 16

usual [0, 1]-based type-1 techniques to type-2, type-3, and maybe even higher types. In this 17

paper, we describe efficient algorithms for data processing under such higher-order fuzzy 18

uncertainty. 19

The structure of this paper is as follows. In Section 2, we recall the need for data 20

processing. In Section 3, we recall the need for fuzzy techniques and for higher-order fuzzy 21

techniques. In Sections 4, 5, and 6, we recall how data can be processed under type-1, 22

interval type-2, and general type-2 fuzzy uncertainty. Finally, in Section 7, we use these 23

known results to come up with new efficient algorithms for data processing under type-3 24

and higher order fuzzy uncertainty. Section 8 contains conclusions and plans for future 25

work. 26

2. Why Data Processing 27

One of the main objectives of science is to describe the current state of the world – 28

and to predict its future state. One of the main objectives of engineering is to design new 29

buildings, gadgets, and/or new algorithms to make this future better. To describe the state 30

of the world – and to describe the engineered objects – we need to list the numerical values 31

of the quantities that characterize different natural and artificial objects. 32

Some quantities we can simply measure: we can directly measure the temperature 33

outside, we can directly measure the distance between the two nearby buildings, etc. 34
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However, many quantities we cannot measure directly: e.g., we cannot directly measure 35

the distance to a faraway star or the amount of oil in a given oilfield. And it is definitely 36

not possible to directly measure the future state – e.g., future temperature. To estimate such 37

a difficult-to-measure quantity y, a natural idea is to find easier-to-measure-or-estimate 38

quantities x1, x2, . . . that are related to the desired quantity y by a known dependence 39

y = f (x1, x2, . . .). Then, we can measure or estimate the quantities xi, and use the results ỹ 40

of measurement or estimation to estimate y as ỹ = f (x̃1, x̃2, . . .). 41

Computing this estimate, i.e., applying the algorithm f (x1, x2, . . .) to the results of 42

measurements and/or expert estimations is what is usually called data processing; see, e.g., 43

[21]. 44

3. Need for Fuzzy Uncertainty and Need for Higher-Order Fuzzy Uncertainty 45

3.1. Need for fuzzy uncertainty 46

Often, estimates for xi come from experts, and experts rarely provide exact values. 47

Expert knowledge is usually formulated by using imprecise (“fuzzy”) words from natural 48

language. An experienced driver explaining his/her driving strategy will not say that in a 49

certain situation, you need to show down by exactly 5.0 km/h, he/she will probably say 50

“slow down a little bit”, or “slow down by about 5 km/h". 51

We want to use this imprecise knowledge in computer-related data processing. The 52

challenge is that computers were designed to process numbers, not words from natural 53

language. So, we need to transform expert statements into computer-understandable 54

numerical form. For this purpose, Lotfi Zadeh invented fuzzy techniques (see, e.g., [1,9, 55

17,19,20,24]), where each imprecise term like “small” is described by assigning, to each 56

possible value x of the corresponding quantity, the degree m(x) – from the interval [0, 1] – 57

to which, according to the expert, this value is small. The resulting function m(x) is known 58

as the membership function or, alternatively, as the fuzzy set. This original idea is also called 59

type-1 fuzzy techniques. 60

Let us describe this idea in precise terms. 61

Definition 1. [1,9,17,19,20,24] Let U be a set. By a fuzzy subset of U, or, for short, a fuzzy 62

set, we mean a function m : U → [0, 1]. 63

Usually, only normalized fuzzy sets are considered, i.e., fuzzy sets for which m(x0) for 64

some x0 ∈ U. 65

Definition 2. [1,9,17,19,20] A fuzzy set is called normalized if m(x0) = 1 for some x0. 66

3.2. Fuzzy numbers 67

For most terms, the membership function first (non-strictly) increases from 0 and then 68

(non-strictly) decreases to 0. Such membership functions are known as fuzzy numbers. 69

Definition 3. [1,9,17,19,20,24] A fuzzy set m : IR → [0, 1] is called a fuzzy number if it 70

satisfies the following two conditions: 71

• We have m(x) → 0 when x → −∞ and when x → +∞. 72

• There exists a number x0 such that m(x) is (non-strictly) increasing for x ≤ x0 and (non- 73

strictly) decreasing for x ≥ x0. 74

It should be mentioned that sometimes, an additional requirement is added to this 75

definition: that there exists an interval [x, x] such that m(x) = 0 for all values x outside this 76

interval. 77

3.3. “And”- and “or”-operations (t-norms and t-conorms) 78

Expert rules often involve logical connectives like “and” and “or”. For example, a rule 79

can say that if a car in front of you is close and it slows down a little bit, then you should 80

break a little bit. Strictly speaking, in this case, we need to find out, for each pair consisting 81

of a distance value and a change-in-velocity value, the degree to which, for this pair, the 82

condition “a car in front of you is close and it slows down a little bit” is satisfied. In this case, 83
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we may be able to do it, but, e.g., in medicine, we have rules with 5 or 6 different conditions. 84

Even if we try only 10 values for each of the 5-6 variables, this still means asking 105 to 106
85

questions to an expert – this is not feasible. In such situations, to estimate the degree of 86

confidence in a composite statement A & B or A ∨ B, the only information we have is the 87

expert’s degrees of confidence a and b in the original statements A and B. 88

The algorithm f&(a, b) that estimates the degree of confidence in A & B based on this 89

information is known as an “and”-operation or, for historical reason, a t-norm. 90

Definition 4. [1,9,17,19,20] An “and”-operation (t-norm) is a function f& : [0, 1] × 91

[0, 1] → [0, 1] that satisfies the following properties for all a, b, a′, b′, and c: 92

• f&(a, b) = f&(b, a) (commutativity); 93

• f&(a, f&(b, c)) = f&( f&(a, b), c) (associativity); 94

• if a ≤ a′ and b ≤ b′, then f&(a, b) ≤ f&(a′, b′) (monotonicity); 95

• f&(0, a) = 0 and f&(1, a) = a. 96

Similarly, the algorithm f∨(a, b) that estimates the degree of confidence in A ∨ B based 97

on this information is known as an “or”-operation or, for historical reason, a t-conorm. 98

Definition 5. [1,9,17,19,20] An “or”-operation (t-conorm) is a function f∨ : [0, 1] × 99

[0, 1] → [0, 1] that satisfies the following properties for all a, b, a′, b′, and c: 100

• f∨(a, b) = f∨(b, a) (commutativity); 101

• f∨(a, f∨(b, c)) = f∨( f∨(a, b), c) (associativity); 102

• if a ≤ a′ and b ≤ b′, then f∨(a, b) ≤ f∨(a′, b′) (monotonicity); 103

• f∨(0, a) = a and f∨(1, a) = 1. 104

The simplest – and frequently used – “and”- and “or”-operations are f&(a, b) = 105

min(a, b) and f∨(a, b) = max(a, b). 106

107

3.4. Operations on fuzzy sets 108

For usual sets, the intersection S1 ∩ S2 of two sets is the set of all of all elements that 109

belong to the first set S1 and that belong to the second set S2. Similarly, the union S1 ∪ S2 110

of two sets is the set of all of all elements that belong to the first set S1 or that belong 111

to the second set S2. Thus, once we have selected “and”- and “or”-operations, we can 112

define intersection and union of fuzzy sets m1(x) and m2(x) as, correspondingly, m∩(x) = 113

f&(m1(x), m2(x)) and m∪(x) = f∨(m1(x), m2(x)). In particular, for the usual choice of 114

f&(a, b) = min(a, b) and f∨(a, b) = max(a, b), we arrive at the following definitions: 115

Definition 6. [1,9,17,19,20,24] Let U be a set and let m1 : U → [0, 1] and m2 : U → [0, 1] 116

be fuzzy sets; then: 117

• by the intersection m∩ = m1 ∩ m2 of these fuzzy sets, we mean the set m∩(x) = 118

min(m1(x), m2(x)); 119

• by the union m∪ = m1 ∪ m2 of these fuzzy sets, we mean the set m∪(x) = 120

max(m1(x), m2(x)). 121

122

3.5. Data processing under fuzzy uncertainty 123

Since fuzzy techniques are practically useful, it is desirable to develop efficient algo- 124

rithms for data processing under such uncertainty: 125

• We know that the quantity-of-interest y is a function y = f (x1, x2, . . .) of several 126

auxiliary quantities x1, x2, . . . 127

• We also know, for each i, the membership function mi(xi) that describes, for each real 128

number xi, the degree to which this number is a possible value of the i-th input. 129

Based on this information, we want to describe, for each real number y, the degree m(y) to 130

which this number is a possible value of the quantity of interest. 131
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To determine this degree, let us take into account that a value y is possible if y = 132

f (x1, x2, . . .) for some possible values xi. We know the degree mi(xi) to which each value 133

xi is possible. We can therefore use the min “and”-operation to describe, for each tuple 134

(x1, x2, . . .) for which y = f (x1, x2, . . .), the degree to which all its values are possible – i.e.. 135

x1 is possible and x2 is possible, etc. – as min(m1(x1), m2(x2), . . .). 136

The value y if possible if either the first tuple (x1, x2, . . .) for which y = f (x1, x2, . . .)
is possible, or the second such tuple is possible, etc. We can therefore us the max “or”-
operation to estimate the degree to which y is possible as

m(y) = sup{min(m1(x1), m2(x2), . . .) : y = f (x1, x2, . . .)}. (1)

This formula was first described by Zadeh himself and is therefore known as Zadeh’s 137

extension principle. 138

Definition 7. [1,9,17,19,20] Let U1, U2, . . . , U be sets, let mi : Ui → [0, 1] be fuzzy sets, 139

and let f : U1 × U2 × . . . → U be a function. By the result m = f (m1, m2, . . .) of applying the 140

function f to fuzzy sets mi we mean a fuzzy set m : U → [0, 1] defined by the formula (1). 141

3.6. Need for type-2 fuzzy technique 142

The challenge with type-1 fuzzy technique is that similarly to the fact that an expert 143

cannot name the exact value of the quantity, the same expert cannot produce the exact 144

degree m(x). At best, the expert can provide an interval of possible values of this degree – 145

e.g., [0.6, 0.7] – or even a fuzzy statement like “the degree is close to 0.6”. So, a natural idea 146

is to allow the degree m(x) to be an interval – which leads to interval-valued fuzzy sets – or 147

even a fuzzy number corresponding to a statement like “the degree is close to 0.6” – this 148

leads to so-called type-2 fuzzy sets. In general, an interval [x, x] can be viewed as a fuzzy set 149

– the degree of confidence is 1 for all the values inside this interval and 0 for all the values 150

outside this interval. Thus, interval-values fuzzy sets are particular cases of type-2 fuzzy 151

sets. Type-2 fuzzy sets – both interval-valued and general – turned out to be useful in many 152

applications, see, e.g., [6,7,13,17,23,26]. 153

Definition 8. [17,19] Let U be a set, and let I denote the set of all subintervals [m, m] ⊆ [0, 1] 154

of the interval [0, 1]. By a interval-valued fuzzy subset of U, or, for short, an interval-valued 155

fuzzy set, we mean a function m : U → I. 156

In the interval-valued case, for each x, the expert-generated degree of confidence that 157

x has the desired property (e.g., is small) is an interval m(x) = [m(x), m(x)]. In the general 158

type-2 fuzzy case, we have the following definition. 159

Definition 9. [17,19] Let U be a set, and let F([0, 1]) denote the set of all fuzzy subsets of 160

the interval [0, 1]. By a type-2 fuzzy subset of U, or, for short, a type-2 fuzzy set, we mean a 161

function m : U → F([0, 1]). 162

In the general type-2 case, for each x and for each number t from the interval [0, 1], the 163

expert provides a degree to which this number t is a degree of confidence that x has the 164

desired property (like “small”). We will denote this degree by m(x, t). 165

166

3.7. Operations on interval-valued and general type-2 fuzzy sets 167

To describe union and intersection of interval-valued and general type-2 fuzzy sets, it 168

is natural to use formulas similar to formulas from Definition 6. To make sense of these 169

formulas, we need to describe what is the meaning of min(m1, m2) and max(m1, m2) for 170

the case when mi are both fuzzy sets – but that meaning is already provided by Definition 171

7, for the case when U1 = U2 = U = [0, 1] and f (a, b) = min(a, b) or f (a, b) = max(a, b). 172

Thus, we arrive at the following definitions: 173

Definition 10. [17,19] Let U be a set and let m1 : U → F([0, 1]) and m2 : U → F([0, 1]) be 174

type-2 fuzzy sets; then: 175
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• by the intersection m∩ = m1 ∩ m2 of these type-2 fuzzy sets, we mean the type-2 fuzzy set 176

m∩(x) = min(m1(x), m2(x)), where, for each x, the result min(m1(x), m2(x)) of applying 177

the function f (a, b) = min(a, b) to fuzzy sets m1(x) and m2(x) is defined by Definition 7. 178

• by the union m∪ = m1 ∪ m2 of these type-2 fuzzy sets, we mean the set m∪(x) = 179

max(m1(x), m2(x)), where, for each x, the result max(m1(x), m2(x)) of applying the func- 180

tion f (a, b) = max(a, b) to fuzzy sets m1(x) and m2(x) is defined by Definition 7. 181

One can show that for interval-valued fuzzy sets, when mi(x) = [mi(x), mi(x)], the
resulting interval-valued membership functions m∩(x) and m∪(x) have the following form:

m∩(x) = [min(m1(x), m2(x)), min(m1(x), m2(x))];

m∪(x) = [max(m1(x), m2(x)), max(m1(x), m2(x))].

182

183

3.8. Data processing under type-2 fuzzy uncertainty 184

Since, as we have mentioned, type-2 fuzzy techniques are practically useful, it is 185

desirable to develop efficient algorithms for data processing under such uncertainty: 186

• We know that the quantity-of-interest y is a function y = f (x1, x2, . . .) of several 187

auxiliary quantities x1, x2, . . .. 188

• We also know, for each i, the membership function mi(xi) that describes, for each real 189

number xi, the (fuzzy-valued) degree to which this number is a possible value of the 190

i-th input. 191

Based on this information, we want to describe, for each real number y, the (fuzzy-valued) 192

degree m(y) to which this number is a possible value of the quantity of interest. 193

To describe the result of applying a function f (x1, x2, . . .) to type-2 fuzzy sets, it is 194

natural to use the same formula (1) as for the usual (type-1) fuzzy sets. To make sense of this 195

formula, we need to describe what is the meaning of its right-hand side when the values 196

mi(xi) are themselves fuzzy sets – but that meaning is already provided by Definition 7. 197

Thus, we arrive at the following definition. 198

Definition 11. [17] Let U1, U2, . . . , U be sets, let mi : Ui → F([0, 1]) be type-2 fuzzy sets, 199

and let f : U1 × U2 × . . . → U be a function. By the result m = f (m1, m2, . . .) of applying the 200

function f to type-2 fuzzy sets mi we mean a fuzzy set m : U → F([0, 1]) defined by the formula 201

(1), in which the right-hand side is understood according to Definition 7. 202

3.9. Need for type-3 and higher-order fuzzy techniques 203

Similarly to the fact that an expert cannot describe his/her degree of confidence – that x 204

is small – by a single number, the same expert cannot describe his/her degree of confidence 205

that t is a degree of confidence that x is small by a single number. At best, the expert can 206

provide either an interval [m(x, t), m(x, t)] or a fuzzy number that describes this degree of 207

confidence. The fuzzy case is known as type-3 fuzzy technique, and the interval-valued case 208

is known as interval type-3. 209

Definition 12. [2] Let U be a set, and let F2([0, 1]) denote the set of all type-2 fuzzy subsets 210

of the interval [0, 1]. By a type-3 fuzzy subset of U, or, for short, a type-3 fuzzy set, we mean a 211

function m : U → F2([0, 1]). 212

In the general type-3 case, for each value s from the interval [0, 1], we provide a degree 213

– denoted by m(x, t, s) – that s is degree of confidence in the statement “t is a degree of 214

confidence that x has the desired property”. 215

216

3.10. Operations on type-3 fuzzy sets 217
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To describe union and intersection of type-3 fuzzy sets, it is natural to use formulas 218

similar to formulas from Definition 6. To make sense of these formulas, we need to describe 219

what is the meaning of min(m1, m2) and max(m1, m2) for the case when mi are both type-2 220

fuzzy sets – but that meaning is already provided by Definition 11, for the case when 221

U1 = U2 = U = [0, 1] and f (a, b) = min(a, b) or f (a, b) = max(a, b). Thus, we arrive at the 222

following definitions: 223

Definition 13. [2] Let U be a set and let m1 : U → F2([0, 1]) and m2 : U → F2([0, 1]) be 224

type-3 fuzzy sets; then: 225

• by the intersection m∩ = m1 ∩ m2 of these type-3 fuzzy sets, we mean the type-3 fuzzy 226

set m∩(x) = min(m1(x), m2(x)), where, for each x, the result min(m1(x), m2(x)) of ap- 227

plying the function f (a, b) = min(a, b) to type-2 fuzzy sets m1(x) and m2(x) is defined by 228

Definition 11. 229

• by the union m∪ = m1 ∪ m2 of these type-3 fuzzy sets, we mean the type-3 fuzzy set 230

m∪(x) = max(m1(x), m2(x)), where, for each x, the result max(m1(x), m2(x)) of apply- 231

ing the function f (a, b) = max(a, b) to type-2 fuzzy sets m1(x) and m2(x) is defined by 232

Definition 11. 233

3.11. Is this worth considering? 234

At first glance, the difference between type-2 and type-3 is so subtle and complicated 235

that one can doubt whether it is necessary to use type-3 in practical applications. Actually, 236

people doubted that type-2 would be practically useful – and, as we have mentioned, it 237

turned out that it is often useful. Similarly, it turned out that type-3 techniques are also 238

useful in many practical cases; see, e.g., [2,3] and references therein. Examples of successful 239

use of type-3 fuzzy techniques range from improving the quality of automatic tuning of a 240

television image [5] to more accurate stock market predictions [4]. 241

It should be mentioned that current applications of type-3 fuzzy techniques only use 242

interval-valued type-3 fuzzy sets, i.e., function m : U → F2([0, 1]) for which, for every m, 243

the degree m(x) is an interval-valued fuzzy set. This limitation is caused largely by the fact 244

that processing general type-3 fuzzy sets has been, so far, computationally complicated. 245

This paper’s new efficient algorithm for processing type-3 fuzzy data will help make 246

general type-3 more feasible and will, thus, hopefully, will lead to useful applications of 247

general type-3 fuzzy sets. 248

249

3.12. Data processing under type-3 fuzzy uncertainty 250

Since, as we have mentioned, type-3 fuzzy techniques are practically useful, it is 251

desirable to develop efficient algorithms for data processing under such uncertainty. 252

• We know that the quantity-of-interest y is a function y = f (x1, x2, . . .) of several 253

auxiliary quantities x1, x2, . . .. 254

• We also know, for each i, the membership function mi(xi) that describes, for each real 255

number xi, the (type-2-fuzzy-valued) degree to which this number is a possible value 256

of the i-th input. 257

Based on this information, we want to describe, for each real number y, the (type-2-fuzzy- 258

valued) degree m(y) to which this number is a possible value of the quantity of interest. 259

To describe the result of applying a function f (x1, x2, . . .) to type-3 fuzzy sets, it is 260

natural to use the same formula (1) as for type-1 and type-2 fuzzy sets. To make sense 261

of this formula, we need to describe what is the meaning of its right-hand side when the 262

values mi(xi) are themselves type-2 fuzzy sets – but that meaning is already provided by 263

Definition 11. Thus, we arrive at the following definition. 264

Definition 14. Let U1, U2, . . . , U be sets, let mi : Ui → F2([0, 1]) be type-3 fuzzy sets, and 265

let f : U1 × U2 × . . . → U be a function. By the result m = f (m1, m2, . . .) of applying the 266

function f to type-3 fuzzy sets mi we mean a fuzzy set m : U → F2([0, 1]) defined by the formula 267

(1), in which the right-hand side is understood according to Definition 11. 268
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3.13. What about higher order types? 269

Clearly, an expert cannot provide the exact degree m(x, t, s), so a natural idea is to 270

allow an expert to provide interval-valued of fuzzy degrees – which leads to type-4, where 271

for each real number r from the interval [0, 1], we ask the expert to describe his/her degree 272

of confidence m(x, t, s, r) that r is a proper value of m(x, t, s). 273

The expert cannot describe the precise value of m(x, t, s, r), so this value can also be 274

fuzzy – we get type-5, etc. We can have the following inductive definitions, that describe, 275

for every natural number L > 3, type-L fuzzy sets and operations on them in terms of 276

fuzzy sets of type (L − 1). 277

Definition 15. Let U be a set, and let FL−1([0, 1]) denote the set of all type-(L − 1) fuzzy 278

subsets of the interval [0, 1]. By a type-L fuzzy subset of U, or, for short, a type-L fuzzy set, we 279

mean a function m : U → FL−1([0, 1]). 280

Definition 16. Let U be a set and let m1 : U → FL−1([0, 1]) and m2 : U → FL−1([0, 1]) be 281

type-L fuzzy sets; then: 282

• by the intersection m∩ = m1 ∩ m2 of these type-L fuzzy sets, we mean the type-L fuzzy set 283

m∩(x) = min(m1(x), m2(x)), where, for each x, the result min(m1(x), m2(x)) of applying 284

the function f (a, b) = min(a, b) to type-(L − 1) fuzzy sets m1(x) and m2(x) is defined by 285

Definition 14 (for L = 4) or Definition 17 (for other L). 286

• by the union m∪ = m1 ∪ m2 of these type-L fuzzy sets, we mean the type-L fuzzy set 287

m∪(x) = max(m1(x), m2(x)), where, for each x, the result max(m1(x), m2(x)) of applying 288

the function f (a, b) = max(a, b) to type-(L − 1) fuzzy sets m1(x) and m2(x) is defined by 289

Definition 14 (for L = 4) or Definition 17 (for other L). 290

Definition 17. Let U1, U2, . . . , U be sets, let mi : Ui → FL−1([0, 1]) be type-L fuzzy sets, 291

and let f : U1 × U2 × . . . → U be a function. By the result m = f (m1, m2, . . .) of applying 292

the function f to type-L fuzzy sets mi we mean a fuzzy set m : U → FL−1([0, 1]) defined by the 293

formula (1), in which the right-hand side is understood according to Definition 14 (for L = 4) or 294

according to this same definition (for other L). 295

3.14. Need for data processing under such uncertainty 296

Since type-1, type-2, and type-3 fuzzy techniques are practically useful, it is desirable 297

to develop efficient algorithms for data processing under such uncertainty. Efficient al- 298

gorithms for type-1 and type-2 are known – we describe them in the following sections. 299

Efficient algorithms for type-3 case are described in the last section of this paper. 300

We do not know yet whether type-4, type-5, etc., will be practically useful, but the fact 301

that type-2 and type-3 turned out to be useful makes us think that it is quite probable that 302

higher-order fuzzy sets will be useful. So it makes sense to think of efficient algorithms for 303

these cases too, and this is what we will do in the same last section. 304

4. Effective Algorithms for Data Processing under Type-1 Fuzzy Uncertainty: Reminder 305

4.1. How to actually perform data processing: analysis of the problem 306

Straightforward computation of the formula (1) requires solving a complex constraint 307

optimization problem – which is, in general, time-consuming. It is known, however, that 308

there are more efficient ways to compute m(y). These ways are related to the notion of 309

α-cuts of a fuzzy sets, which are defined, for each α ∈ (0, 1], as {x : m(x) ≥ α}. For fuzzy 310

numbers, each α-cut is an interval; we will denote it by x(α) = [m(α), m(α)]. 311

For α = 0, we can use a slightly different formulation of the α-cut: it the closure 312

x(0) = {x : m(x) > 0} of the set {x : m(x) > 0}. 313

Definition 18. [1,9,17,19,20] Let U be a set, let m : U → [0, 1] be a fuzzy set, and let 314

α ∈ [0, 1] be a real number. Then, by the α-cut of m, we mean the following set: 315

• when α > 0, we take {x : m(x) ≥ α}; 316

• when α = 0, we take {x : m(x) > 0}. 317
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In the following text, for simplicity, we will only list the simpler formula which is 318

valid for α > 0, but, of course, for α = 0, we have to use the more complex formula. 319

Once we know all the α-cuts, we can reconstruct the membership function as m(x) = 320

sup{α : x ∈ x(α)}. In particular, if we know α-cuts for α = 0, 0.1, 0.2, . . . , 1.0, then we 321

can reconstruct m(x) with accuracy 0.1 – which is usually sufficient, since experts rarely 322

produce their degree of confidence with higher accuracy. So, to find m(y), it is sufficient to 323

find the α-cuts y(α) for the corresponding 11 values α. 324

Because of the possibility to easily move from the usual representation of the mem- 325

bership function m(x) and its α-cut representation, sometimes the membership function is 326

stored by listing the corresponding α-cuts. 327

To find the α-cuts corresponding to the desired quantity y, we can take into ac-
count that the value m(y) as described by the formula (1) is larger than or equal to α
if and only if for one of the tuples (x1, x2, . . .) for which y = f (x1, x2, . . . , ), we have
min(m1(x1), m2(x2), . . .) ≥ α. This inequality, in its turn, is equivalent to requiring
that mi(xi) ≥ α for all i. Thus, the α-cut for y is equal to the range of the function
y = f (x1, x2, . . .) when each xi is in the corresponding α-cut:

y(α) = f (x1(α), x2(α), . . .), (2)

where for each sets X1, X2, . . ., the range f (X1, X2, . . .) is defined as

f (X1, X2, . . .) def
= { f (x1, x2, . . .) : x1 ∈ X1, x2 ∈ X2, . . .}. (3)

328

The problem of computing the range of a function when each input is in a known inter- 329

val is known as the problem of interval computations; there are efficient general algorithms 330

for estimating this range, see, e.g., [8,12,16,18] 331

4.2. Comment 332

In some important cases, interval computation is easy, no general complex algorithms
are needed. For example, if the function f (x1, x2, . . .) is (non-strictly) increasing in each of
its variables, then the smallest value of this function on intervals Xi = [xi, xi] is attained
when each input xi is the smallest, i.e., when xi = xi for all i. Similarly, the largest value
of this function on intervals Xi = [xi, xi] is attained when each input xi is the largest, i.e.,
when xi = xi for all i. Thus,

f ([x1, x1], [x2, x2], . . .) = [ f (x1, x2, . . .), f (x1, x2, . . .)].

333

4.3. Resulting algorithm 334

• First, if the information about the inputs xi is stored in the form of the usual member-
ship functions mi(xi), we compute, for each i and for each value α ∈ {0, 0.1, . . . , 1.0},
the corresponding α-cut

xi(α) = {xi : mi(xi) ≥ α}.

(Recall that for α = 0, we will have to use a slightly more complex formula.) 335

• Then, for each value α from the above list, we use an interval computation algo- 336

rithm to compute the range y(α) = f (x1(α), x2(α), . . .). These ranges form the α-cut 337

representation of the desired membership function m(y). 338

• Finally, if we want to represent this membership function in the usual form, we 339

compute m(y) = max{y : y ∈ y(α)}. 340
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4.4. How many computation steps do we need 341

These computations need to be repeated for all α. So, if we use 11 values α = 342

0, 0.1, . . . , 1.0, then, to find the result of data processing under type-1 fuzzy uncertainty, we 343

need to apply an interval computations algorithm 11 times. 344

5. Data Processing under Interval-Valued Fuzzy Uncertainty: Reminder 345

5.1. Formulation of the problem 346

In the interval-valued case, the relation between m(y) and mi(xi) is described by the 347

same formula (1); the main difference is that now, values m(y) and mi(xi) are not numbers 348

but intervals. 349

The corresponding efficient algorithms are described in [10,11]. 350

5.2. Interval case: analysis of the problem 351

In the interval case, each value mi(xi) is an interval [mi(xi), mi(xi)]. The right-hand
side of the formula (1) is a non-strictly increasing function of all the values mi(xi). Thus,
the desired range is equal to [m(y), m(y)], where

m(y) = sup{min(m1(x1), m2(x2), . . .) : y = f (x1, x2, . . .)} and

m(y) = sup{min(m1(x1), m2(x2), . . .) : y = f (x1, x2, . . .)}.

These are exactly formulas (1) for membership functions mi(xi) and mi(xi). So, to compute 352

each of the two bounds m(y) and m(y), we can use the efficient α-cut-based algorithm. 353

5.3. Interval case: resulting algorithm 354

We are given interval-valued membership functions [mi(xi), mi(xi)]. 355

• Based on each of these membership functions, for each i and for each value α from the
given list, we compute the orrepsonding α-cuts as:

xi(α) = {xi : mi(xi) ≥ α} and xi(α) = {xi : mi(xi) ≥ α}.

• We compute the α-cuts y(α) and y(α) for the endpoints m(y) and m(y) of the interval-
valued membership function [m(y), m(y)] as follows:

y(α) = f (x1(α), x2(α), . . .) and y(α) = f (x1(α), x2(α), . . .).

356

• Finally, the compute the endpoints m(y) and m(y) of the desired interval-valued
membership function [m(y), m(y)] as

m(y) = max{α : y ∈ y(α)} and m(y) = max{α : y ∈ y(α)}.

357

5.4. How many computation steps do we need 358

These computations need to be repeated for all α. So, if we use 11 values α = 359

0, 0.1, . . . , 1.0, then, to find the result of data processing under type-2 fuzzy uncertainty, we 360

need to apply an interval computations algorithm 2 · 11 = 22 times. 361

6. Data Processing under General Type-2 Fuzzy Uncertainty: Reminder 362

6.1. Formulation of the problem 363

In the general type-2 case, the relation between m(y) and mi(xi) is described by the 364

same formula (1); the main difference is that now, values m(y) and mi(xi) are not numbers 365

but fuzzy sets. 366
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The corresponding efficient algorithms are described in [10,11]. 367

6.2. General type-2 case: analysis of the problem 368

In the general type-2 case, m(y) and mi(xi) are fuzzy numbers. In this case, we can use 369

the general type-1 result that the processing of fuzzy numbers is equivalent to computing 370

the ranges of the processing function on different α-cuts. In this case, the data processing is 371

described by the formula (1). 372

To distinguish α-cuts of the original membership functions for xi and y and the α-cuts
of each fuzzy number m(y) and mi(xi), we will use the letter β for the new alpha-cuts.
Thus, we get the following for each β:

m(y)(β) = sup{min(m1(x1)(β), m2(x2)(β), . . .) : y = f (x1, x2, . . .)},

where
m(y)(β)

def
= {t : m(y, t) ≥ β} and mi(xi)(β)

def
= {t : mi(xi, t) ≥ β}.

For fuzzy numbers, β-cuts are intervals, and the corresponding relation (1) is increas-
ing. Thus, the above formula means that to get the lower endpoint m(y)(β) of a y’s β-cut,
we need to use only lower endpoints for β-cuts for xi, and similarly for the upper endpoints:

m(y)(β) = sup{min(m1(x1)(β), m2(x2)(β), . . .) : y = f (x1, x2. . . .)} and

m(y)(β) = sup{min(m1(x1)(β), m2(x2)(β), . . .) : y = f (x1, x2, . . .)}.

Each of these formulas is, in effect, Zadeh’s extension principle for the corresponding
membership functions. Thus, there formulas can be reformulated in terms of α-cuts of the
corresponding membership functions:

y(α, β) = f (x1(α, β), x2(α, β), . . .) and

y(α, β) = f (x1(α, β), x2(α, β), . . .),

where
y(α, β)

def
= {y : m(y)(β) ≥ α}, xi(α, β)

def
= {xi : mi(xi)(β) ≥ α},

y(α, β)
def
= {y : m(y)(β) ≥ α}, xi(α, β)

def
= {xi : mi(xi)(β) ≥ α}.

Hence, we arrive at the following algorithm: 373

6.3. General type-2 case: resulting algorithm 374

We start with type-2 membership functions mi(xi, t). 375

• First, for each i and for each value β from the given list, we compute the β-cuts

[mi(xi)(β), mi(xi)(β)]
def
= {t : mi(xi, t) ≥ β}.

• Then, for each i and for each pair of values (α, β) from the given list, we compute the
α-cuts

xi(α, β)
def
= {xi : mi(xi)(β) ≥ α} and xi(α, β)

def
= {xi : mi(xi)(β) ≥ α}.

• For each α and β, we then use an interval computation algorithm to compute:

y(α, β) = f (x1(α, β), x2(α, β), . . .) and

y(α, β) = f (x1(α, β), x2(α, β), . . .).
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376

• Based on these intervals, for each β, we compute

m(y)(β) = sup{α : y ∈ y(α, β)} and m(y)(β) = sup{α : y ∈ y(α, β)}.

• Finally, we compute the desired membership function

m(y, t) = max{β : t ∈ [m(y)(β), m(y)(β)]}.

6.4. How many computation steps do we need 377

These computations need to be repeated for all α and β. So, if for each of these two 378

parameters, we use 11 values α, β = 0, 0.1, . . . , 1.0, then, to find the result of data processing 379

under type-2 fuzzy uncertainty, we need to apply an interval computations algorithm 380

2 · 112 = 242 times. 381

7. Data Processing under Type-3 (and Higher Order) Fuzzy Uncertainty: A New 382

Algorithm 383

7.1. Formulation of the problem 384

Let us show the above type-2 algorithms can be used to come with an efficient algo- 385

rithm for the type-3 case. 386

7.2. Type-3 case: analysis of the problem 387

In the type-3 case, each value m(y) and mi(xi) is a type-2 fuzzy set. Thus, we have the
relation (1) between these type-2 fuzzy sets. So, based on the algorithm presented in the
previous section, for each pair of values β and γ from the interval [0, 1], we have:

m(y)(β, γ) =

sup{min(m1(x1)(β, γ), m2(x2)(β, γ), . . .) : y = f (x1, x2, . . .)} (4)

and
m(y)(β, γ) =

sup{min(m1(x1)(β, γ), m2(x2)(β, γ), . . .) : y = f (x1, x2, . . .)}, (5)

where
m(y)(β, γ) = [m−(y)(β, γ), m+(y)(β, γ)]

def
= {t : m(y, t)(γ) ≥ β},

mi(xi)(β, γ) = [m−
i (xi)(β, γ), m+

i (xi)(β, γ)]
def
= {t : mi(xi, t)(γ) ≥ β},

m(y)(β, γ) = [m−(y)(β, γ), m+(y)(β, γ)]
def
= {t : m(y, t)(γ) ≥ β},

mi(xi)(β, γ) = [m−
i (xi)(β, γ), m+

i (xi)(β, γ)]
def
= {t : mi(xi, t)(γ) ≥ β},

and
[m(y, t)(γ), m(y, t)(γ)] def

= {s : m(y, t, s) ≥ γ},

[mi(xi, t)(γ), mi(xi, t)(γ)] def
= {s : mi(xi, t, s) ≥ γ}.

The corresponding transformation (1) is non-strictly increasing, thus the formulas (4) and
(5) lead to similar relations between endpoints of the corresponding intervals:

m−(y)(β, γ) =

sup{min(m−
1 (x1)(β, γ), m−

2 (x2)(β, γ), . . .) : y = f (x1, x2, . . .)}, (6)
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m+(y)(β, γ) =

sup{min(m+
1 (x1)(β, γ), m+

2 (x2)(β, γ), . . .) : y = f (x1, x2, . . .)}, (7)

m−(y)(β, γ) =

sup{min(m−
1 (x1)(β, γ), m−

2 (x2)(β, γ), . . .) : y = f (x1, x2, . . .)}, (8)

m+(y)(β, γ) =

sup{min(m+
1 (x1)(β, γ), m+

2 (x2)(β, γ), . . .) : y = f (x1, x2, . . .)}. (9)

Each of the formulas (6)–(9) is, in effect, Zadeh’s extension principle for the corresponding
membership functions. Thus, there formulas can be reformulated in terms of α-cuts of the
corresponding membership functions:

y−(α, β, γ) = f (x−1 (α, β, γ), x−2 (α, β, γ), . . .),

y+(α, β, γ) = f (x+1 (α, β, γ), x+2 (α, β, γ), . . .),

y−(α, β, γ) = f (x−
1 (α, β, γ), x−

2 (α, β, γ), . . .),

y+(α, β, γ) = f (x+
1 (α, β, γ), x+

2 (α, β, γ), . . .),

where

y−(α, β, γ)
def
= {y : m−(y)(β, γ) ≥ α}, x−i (α, β, γ)

def
= {xi : m−

i (xi)(β, γ) ≥ α},

y+(α, β, γ)
def
= {y : m+(y)(β, γ) ≥ α}, x+i (α, β, γ)

def
= {xi : m+

i (xi)(β, γ) ≥ α},

y−(α, β, γ)
def
= {y : m−(y)(β, γ) ≥ α}, x−

i (α, β, γ)
def
= {xi : m−

i (xi)(β, γ) ≥ α},

y+(α, β, γ)
def
= {y : m+(y)(β, γ) ≥ α}, x+

i (α, β, γ)
def
= {xi : m+

i (xi)(β, γ) ≥ α}.

Hence, we arrive at the following algorithm. 388

7.3. Type-3 case: resulting algorithm 389

We start with type-3 membership functions mi(xi, t, s). 390

• First, for every i and for all γ from the selected list of values, we compute:

[mi(xi, t)(γ), mi(xi, t)(γ)] def
= {s : mi(xi, t, s) ≥ γ}.

• Then, for each i, β, and γ, we compute:

[m−
i (xi)(β, γ), m+

i (xi)(β, γ)]
def
= {t : mi(xi, t)(γ) ≥ β} and

[m−
i (xi)(β, γ), m+

i (xi)(β, γ)]
def
= {t : mi(xi, t)(γ) ≥ β}.
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• Then, for each i, α, β, and γ, we compute

x−i (α, β, γ)
def
= {xi : m−

i (xi)(β, γ) ≥ α},

x+i (α, β, γ)
def
= {xi : m+

i (xi)(β, γ) ≥ α},

x−
i (α, β, γ)

def
= {xi : m−

i (xi)(β, γ) ≥ α},

x+
i (α, β, γ)

def
= {xi : m+

i (xi)(β, γ) ≥ α}.

• For each α, β, and γ, we then use an interval computation algorithm to compute:

y−(α, β, γ) = f (x−1 (α, β, γ), x−2 (α, β, γ), . . .),

y+(α, β, γ) = f (x+1 (α, β, γ), x+2 (α, β, γ), . . .),

y−(α, β, γ) = f (x−
1 (α, β, γ), x−

2 (α, β, γ), . . .),

y+(α, β, γ) = f (x+
1 (α, β, γ), x+

n (α, β, γ), . . .).

391

• Next, for each y, β, and γ, we compute

m−(y)(β, γ) = max{α : y ∈ y−(α, β, γ)},

m+(y)(β, γ) = max{α : y ∈ y+(α, β, γ)},

m−(y)(β, γ) = max{α : y ∈ y−(α, β, γ)},

m+(y)(β, γ) = max{α : y ∈ y+(α, β, γ)}.

• For each y, t, and γ, we compute

m(y, t)(γ) = max{β : t ∈ [m−(y)(β, γ), m+(y)(β, γ)]} and

m(y, t)(γ) = max{β : t ∈ [m−(y)(β, γ), m+(y)(β, γ)]}.

• Finally, for all y, t and s, we compute

m(y, t, s) = max{γ : s ∈ [m(y, t)(γ), m(y, t)(γ)]}.

7.4. What about higher order fuzzy sets? 392

In this section, we showed how processing type-2 fuzzy information can be used 393

to processing type-2 fuzzy information. This reduction was based on the fact that in the 394

type-3 case, each value m(y) and mi(xi) is a type-2 fuzzy set. Thus, we have the relation (1) 395

between these type-2 fuzzy sets. 396

Similarly, in the type-4 case, each value m(y) and mi(xi) is a type-3 fuzzy set. Thus, we 397

have the relation (1) between these type-3 fuzzy sets – and we can use the above algorithm 398

to process these values. Similarly, for every level L, in the type-L case, each value m(y) and 399

mi(xi) is a type-(L − 1) fuzzy set. Thus, we have the relation (1) between these type-(L − 1) 400

fuzzy sets. This way, we can reduce processing type-L fuzzy sets to processing type-(L − 1) 401

fuzzy sets; similarly, we can reduce processing type-(L − 1) fuzzy sets to processing type- 402

(L − 2) fuzzy sets, etc., until we get to the known algorithms for processing type-1 and 403

type-2 fuzzy sets. 404
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7.5. How many computational steps do we need 405

The only (minor) problem with processing type-3 and higher-order fuzzy sets is that 406

as we go to higher and higher order, the computational complexity increases. Indeed: 407

• For type-1, for each y, the desired information m(y) consists of a single number. In 408

this case, if we use 11 values of α, we need to use an interval computation algorithm 409

11 times. 410

• For type-2, for each y, we need to find the values m(y, t) corresponding to different 411

values t ∈ [0, 1]. If we use 11 values for t, we thus need at least 11 times more 412

computations than in the type-1 case – and indeed, we need order of 11 · 11 calls to an 413

interval computation algorithm – namely, 2 · 112 calls. 414

• For type-3, for each y, we need to find the values m(y, t, s) corresponding to different 415

values t, s ∈ [0, 1]. If we use 11 values of each of the variables t and s, we thus need at 416

least 112 times more computations than in the type-1 case – and indeed, we need order 417

of 112 · 11 == 113 calls to an interval computation algorithm – namely, 22 · 113 calls. 418

• In general, for type-L, for each y, we need to find the values m(y, t1, . . . , tL−1) cor- 419

responding to different values t1, . . . , tL−1 ∈ [0, 1]. If we use 11 values for each of 420

the variables ti, we thus need at least 11L−1 times more computations than in the 421

type-1 case – and indeed, as one can show by induction over L, we need order of 422

11L−1 · 11 = 11L calls to an interval computation algorithm – namely, 2L−1 · 11L calls. 423

424

8. Conclusions and Future Work 425

426

8.1. Conclusions 427

Usual data processing algorithms treat data points as if they were exact. In practice, 428

data comes with uncertainty. When data comes from experts who describe their knowledge 429

by using imprecise (“fuzzy”) words from natural language, a natural way to describe the 430

corresponding uncertainty is to use fuzzy techniques. To get a more accurate representation 431

of expert uncertainty, it is necessary to use higher-order fuzzy techniques, i.e., go from the 432

usual [0, 1]-based type-1 techniques to type-2, or even to higher-order: type-3 etc. 433

In many practical applications, the use of type-2 fuzzy uncertainty leads to better 434

results. To more efficiently handle such situations, efficient algorithms have been proposed 435

– and used – for data processing under type-2 fuzzy uncertainty. 436

Recently, it has been shown that in several applications, the use of type-3 fuzzy tech- 437

niques leads to further improvements. In view of these successes, it has become necessary 438

to develop efficient algorithms for data processing under such uncertainty. In this paper, 439

we show how to use the existing efficient type-2 algorithms to design efficient algorithms 440

for data processing under type-3 (and, if needed, higher-order) fuzzy uncertainty. 441

442

8.2. Future work 443

Now that an efficient algorithm for data processing under general type-2 fuzzy uncer- 444

tainty has been designed, a natural next step is to implement it and to apply it to different 445

practical situations – with hope that in some of these applications it will lead to better 446

results. 447

It is also desirable to take into account that, in addition to fuzzy techniques, there 448

are many other techniques for representing and processing uncertainty. Many of these 449

techniques have been successfully combined with type-1 and even type-2 fuzzy sets to 450

produce even more adequate results. For example, type-2 fuzzy techniques have been 451

successfully combined with rough sets; see, e.g., [14,15,22,25,27]. In view of these successes, 452

it is desirable to try to combine type-3 fuzzy approach with these alternative uncertainty 453

techniques. 454
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