How to Detect (and Analyze) Independent
Subsystems of a Black-Box (or Grey-Box) System

Saeid Tizpaz-Niari!, Olga Kosheleva?, and Vladik Kreinovich!
Departments of Computer Science! and Teacher Education?
University of Texas at El Paso
500 W. University, El Paso TX 79968, USA
saeid@utep.edu, olgak@utep.edu, vladik@Qutep.edu

Abstract

Often, we deal with black-box or grey-box systems where we can ob-
serve the overall system’s behavior, but we do not have access to the
system’s internal structure. In many such situations, the system actually
consists of two (or more) independent components: a) how can we detect
this based on observed system’s behavior? b) what can we learn about
the independent subsystems based on the observation of the system as a
whole? In this paper, we provide (partial) answers to these questions.

1 Need to Detect (and Determine) Independent
Subsystems: Formulation of the Problem

Black-box and grey-box systems. Often, we only have a so-called black-box
access to the system: namely, we can check how the system reacts to different
inputs, but we do not know what exactly is happening inside this system. For
example, we have a proprietary software, we can feed different inputs to this
software and observe the results, but we do not know how exactly this result is
generated.

In other cases, we have what is known as grey-box access: we have some
information about the system, but not enough to find out what is happening
inside the system. Such situations are also typical in biomedicine, in physics, in
engineering — when we try to reverse engineer a proprietary system, etc.

Independent subsystems: how can we detect them? In many practical
situations, a black-box system consists of two or more independent subsystems.

For physical systems, the overall energy of the system — which we can observe
— is equal to the sum of energies of its components (which we cannot observe);
see, e.g., [2, 3]. Can we detect, based on the observed energies, that the sys-
tem consists of two subsystems? And if yes, can we determine the energies of
subsystems?

Similarly, if a software consists of two independent components, then each
observable state of the system as a whole consists of the states of the two
components. Since the components are independent, the probability of each
such state is equal to the product of probabilities of the corresponding states
of the two components. Can we detect, based on the observed probabilities of
different states, that the system consists of two subsystems? And if yes, can we
determine the probabilities corresponding to subsystems?

What we do in this paper. Sometimes, the accuracy with which we mea-
sure energy or probability is very low. In such cases, we can hardly make any
conclusions about the system’s structure.

In this paper, we consider a frequent case when we know these values with
high accuracy, so that in the first approximation, we can safely ignore the corre-
sponding uncertainty and assume that we know the values of energies or prob-
abilities. In such cases, we show that the detection of subsystems — and the
determination of their energies or probabilities — is possible (and computation-
ally feasible) in almost all situations.

2 Formulation of the Problem in Precise Terms
and the Main Result: Case of Addition

In this section, we consider the case of addition.

Definition 1.

e Let A and B be finite sets of real numbers, each of which has more than
one element. We will call A the set of possible value of the first subsystem
and B the set of possible values of the second subsystem.

e For each pair (A, B), by the observed set, we mean the set A + B def

{a+b:a€ Abe B} of possible sums a+b when a € A and b € B.

Comment. In mathematics, the set A + B is known as the Minkowski sum of
the sets A and B.

Discussion. The problem is, given the observed set A 4+ B, to reconstruct A
and B.

Of course, we cannot reconstruct A and B exactly since, if we add a constant
¢ to all the elements of A and subtract ¢ from all elements of B, the observed set
A + B will remain the same. Indeed, in this case, each pair of elements a € A
and b € B gets transformed into a+c¢ and b—c, so we have (a+c¢)+(b—c) = a+b
and thus, indeed, each sum a + b € A 4+ B remains the same.

So, by the ability to reconstruct, we mean the ability to reconstruct modulo
such an addition-subtraction.

In some cases, it is not possible to reconstruct the components: for example,
for A = {0,1} and B = {0,2}, the Minkowski sum A + B = {0,1,2,3} can
also be represented as {0,1} + {0,1,2}. This alternative representation has a

different number of elements and thus, cannot be obtained from the original one
by addition and subtraction of a constant.

What we will show, however, is that in almost all cases, reconstruction is
possible.

Definition 2. We say that the pair (A, B) is sum-generic if the following
numbers are all different:

e all the non-zero differences a — a’ between elements of the set A,
e all the non-zero differences b — b’ between elements of the set B, and

e all the sums (a —a') + (b— V') of these non-zero differences.

Proposition 1. For every two natural numbers n > 1 and m > 1, the set of all
non-sum-generic pairs (A, B) with n elements in A and m elements in B has
Lebesque measure 0.

Discussion. In other words, almost all pairs (A, B) are sum-generic.

Proof. Indeed, the set of non-sum-generic pairs is a finite union of the sets
described by equalities like a; — a; = ar — a¢, a; — aj = by — by, etc. Each such
set is a hyperplane in the (n + m)-dimensional space of all the pairs (A, B) =
({a1,-..,an}, {b1,...,bn}) and thus, has measure 0. The union of finitely many
sets of measure 0 is also of measure 0. So, the proposition is proven.

Proposition 2. If (A, B) and (A’, B") are sum-generic pairs for which A+ B =
A"+ B, then:

o cither there exists a constant ¢ for which A" = {a+c¢ : a € A} and
B ={b—c:be B},

e or there exists a constant ¢ for which A’ = {b—c:b € B} and B’ =
{a+c:ac€ A}

Discussion. Thus, in the sum-generic case, we can reconstruct the components
A and B from the observed set S = A + B — as uniquely as possible.

Proof.

1°. Let us sort the elements of each of four sets A, B, A’, and B’ in decreasing
order:
ap > ...>an, by >...>b,,

ay >...o>ah, bi>.oo>0.

2°. The largest element of the set A + B is the sum a; + b; of the largest
element a; of the set A and the largest element b; of the set B. The next
largest element of the set A 4+ B is obtained when we add the largest element
of one of the sets and the second largest element of another set, so it is either

a1 + by or as + by. These two numbers are different, since if they were equal,
we would have a; — as = by — by, which contradicts to the assumption that
the pairs (A, B) is sum-generic. Without losing generality, let us assume that
a1 + by > as + by.

Similarly, in the Minkowski sum A’ + B’, the largest element is a) + b/, and
the next element is either aj + b5 or a) + b}. If the value a} + b} is the second
largest, let us rename A’ into B’ and B’ into A’. Thus, without losing generality,
we can assume that the element a} + b), is the second largest.

Since the sets A+ B and A’+ B’ coincide, this means that they have the same
largest element and the same second largest element, i.e., that a; +b; = a} +b]
and aj + be = a} + b},.

3°. Let us prove that for ¢ ay — a1, we have a; = a; + ¢ and b; = b; — ¢ for
all 7 and j.

3.1°. For i = 1, the condition a} = a; + ¢ follows from the definition of c.

3.2°. Let us prove the desired equality for j = 1.
Indeed, from the fact that a; + b; = a) + b}, we conclude that &) = b; —
(a] —ay), i.e., that b] =b; —c.

3.3°. Let us now prove the desired equality for j = 2.

Indeed, the difference between the largest and the second largest elements of
the set A+ B is equal to (a1 +b1) — (a1 +b2) = by —by. Based on the set A'+ B,
we conclude that the same difference is equal to b — b,. From by — by = b, — b,
we conclude that by = by + (b] —b1) = by — ¢. So, the desired equality holds for

j =2 as well.

3.4°. Let us prove the desired equality for all 7.

Since the pair (A, B) is sum-generic, all the differences (a; + b;) — (ax + be)
corresponding to ¢ # k or (i = k and (j,¢) # (1,2)) are different from the
difference by — bs. So, the only pairs of elements from the set A + B whose
difference is equal to by — by are differences of the type (a; + b1) — (a; + ba).
There are exactly n such pairs corresponding to different values a; € A, and the
sorting of the largest elements of these pairs leads to the order

a1 +by >as+by>...>a, +b1.

Similarly, in the set A’ + B’, we have exactly n’ pairs whose difference is equal
to b} — b,, and the sorting of the largest elements of these pairs leads to the
order

ay +by >ay+b >...>al, +b).

Since A+ B = A’ 4+ B’ and b; — by = b} — b}, these two orders must coincide,
so we must have n’ = n and a} — b} = a; — by for all i. Thus, indeed, a; =
a; — by —b1)=a;+ec.

3.5°. Finally, let us prove the desired equality for all j.
Indeed, since the pair (A, B) is sum-generic, all the differences (a; + b;) —
(ag + be) corresponding to j # £ or (j = £ and (i, k) # (1,2)) are different from

the difference a; — as. So, the only pairs of elements from the set A + B whose
difference is equal to a; — ag are differences of the type (a1 + b;) — (a2 + b;).
There are exactly m such pairs corresponding to different values b; € B, and
the sorting of the largest elements of these pairs leads to the order

a1 +by >a1+by>...>a1+ by,

Similarly, in the set A’ + B’, we have exactly m’ pairs whose difference is equal
to aj — af, and the sorting of the largest elements of these pairs leads to the
order
/ / / / /! /
a;+by >al+by>...>a;+0b,,.

Since A+ B = A’ + B’ and a1 — as = a) — d), these two orders must coincide,
so we must have m’ = m and a} — b, = a1 — b; for all j. Thus, indeed,
b; :bj—(a’l—al):bj—c.

The proposition is proven.

Proposition 3. There ezists a quadratic-time algorithm that, given a finite set
S of real numbers:

e checks whether this set can be represented as S = A+ B for some sum-
generic pair (A, B), and

e if S can be thus represented, computes the elements of the corresponding
sets A and B.

Proof. We are given the observed set S. If this set can be represented as a
Minkowski sum, we want to find the values a; > ... > a, and by > ... > b, for
which the sums a; + b; are exactly the elements of the given set S.

In our algorithm, we will follow the steps of the previous proof.

1°. Let us first sort all s elements of the given observed set S in decreasing
order:
€1 > €3 > ... > €.

Sorting requires time O(s - In(s)); see, e.g., [1].

2°. Let us take a; = e; and by = 0, then we have a; + by = e;. Let us also
take by = —(e1 — ea), then ea = a; + be and by — be = e; — ea. According to the
previous proof, this will work if S is the desired Minkowski sum.

3°. Let us now try all pairs (e;,e;) and find all the pairs for which e; — e; =
e1 — ez. Testing all the pairs requires time O(s?). If S is the desired Minkowski
sum, then, as we have shown in the previous proof, the number of such pairs is
n — the number of elements in the set A — and if we sort the largest elements of
these pairs in the decreasing order, we will get elements

ur=ay+by >us=as+by>...>u, =a, +b1.

Thus, based on these elements u;, we get a; = u; — by, i.e., since we chose by = 0,
we get a; = u;.

4°. Let us now find all the pairs (e;, ej) for which e; — e; = a1 — ag. Testing all
the pairs requires time O(s?). If S is the desired Minkowski sum, then, as we
have shown in the previous proof, the number of such pairs is m — the number
of elements in the set B — and if we sort the largest elements of these pairs in
the decreasing order, we will get elements

vi=a1+by >va=ay+by>...>v, =ai+b,.

Thus, based on these elements v;, we get b; = v; — ai, i.e., since we chose
a, = ey, we get b; =v; —ey.

5°. Finally, we form the list of all the sums a; + b;, sort it (which takes time
O(s - 1n(s))), and check that the sorted list coincides element-by-element with
the original sorted list e; > ey > ... If it does, this means that the given set
can be represented as A + B — and we have the desired sets A and B. If the
two lists are different, this means — according to the previous proof — that the
given set S cannot be represented as the Minkowski sum.

The overall computation time is equal to

O(s -In(s)) + O(s%) + O(s?) + O(s - In(s)) = O(s?).
The proposition is proven.

First numerical example. Let us illustrate the above algorithm on a simple
example when A = {1,2} and B = {1,1.3}. In this case, the observed set is
S =A+ B ={2,23,3,3.3}. Let us show how the above algorithm will, given
this set S, reconstruct the component-related sets A and B.

1°. Sorting the elements of the set S in decreasing order leads to

e1=33>e3=3>e3=23>¢e4=2.

2°. According to the algorithm, we then take a; = e; = 3.3, by = 0, and
b2 = —(61 — 62) = —(33 — 3) = —0.3.

3°. Then, we find all pairs (e;, e;) for which e; —e; = e; — ez = 0.3. There are
exactly n = 2 such pairs:

e the pair (3.3,3), and
e the pair (2.3,2).

So, we conclude that n = 2. We then sort the largest elements of these pairs —
i.e., the values 3.3 and 2.3 — in decreasing order:

up = 3.3 > ug = 2.3,

and take a; = 3.3 and ay = 2.3.

4°. Let us now find all the pairs (e;, e;) for which e;—e; = a1—as = 3.3—2.3 = 1.
There are exactly m = 2 such pairs:

e the pair (3.3,2.3), and
e the pair (3,2).

So, we conclude that m = 2. We then sort the largest elements of these pairs —
i.e., the values 3.3 and 3 — in decreasing order:

v, =3.3> vy =3,
and take by =v; —e1 =3.3—-3.3=0and by =3 — 3.3 = —-0.3.
5°. Finally, we form all the sums a; + b;:
a1 +b1=334+0=33, ax+b1=23+0=2.3,
a3 +by=33+(-03)=3, az+by=23+(-0.3)=2.
We then sort these sums into a decreasing sequence:
3.3>3>23>2.

This is exactly the given set S. Thus, this set does correspond to indepen-
dent components, and we have found the sets A and B corresponding to these
components.

Namely, we found the sets A = {3.3,2.3} and B = {0, —0.3}. If we deduce
1.3 to elements in A and add 1.3 to elements in B, we get exactly the original
sets A and B.

Second numerical example. Let us illustrate the above algorithm on a ex-
ample when the observed set S = {2,2.7,3,3.3} cannot be represented as the
Minkowski sum.

1°. Sorting the elements of the set S in decreasing order leads to

e1=33>e3=3>e3=2.7>¢e =2

2°. According to the algorithm, we then take a; = e; = 3.3, by = 0, and
bg = —(61 — 62) = —(33 — 3) = —0.3.

3°. Then, we find all pairs (e;, e;) for which e; —e; = e; — ez = 0.3. There are
exactly n = 2 such pairs:

e the pair (3.3,3), and
e the pair (3,2.7).

So, we conclude that n = 2. We then sort the largest elements of these pairs —
i.e., the values 3.3 and 2.3 — in decreasing order:

up = 3.3 > us = 3,
and take a; = 3.3 and ay = 3.

4°. Let us now find all the pairs (e;, e;) for which e;—e; = a1 —as = 3.3—3 = 0.3.
There are exactly m = 2 such pairs:

e the pair (3.3,3), and
e the pair (3,2.7).

So, we conclude that m = 2. We then sort the largest elements of these pairs —
i.e., the values 3.3 and 3 — in decreasing order:

v, =3.3 > vy =3,

and take by =v1 —e; =3.3—-33=0and by =3 —3.3=—-0.3.

5°. Finally, we form all the sums a; + b;:
a1 +b;=33+0=33, az+b;=3+0=3,

a1 +by =33+ (—0.3) =3, ay+by =3+ (—0.3) =2.7.

We then sort these sum into a decreasing sequence:
33>3=3>2T.

This is different from the sorting of the given set S. Thus, the original set S
does not correspond to independent components.

3 Generalization to Probabilistic Setting with
Multiplication

In this section, we consider the case of multiplication.

Definition 3.

e Let P and Q be finite sets of positive real numbers, each of which has
more than one element, and for each of which, the sum of all its elements
s equal to 1. We will call P the set of possible probabilities of the first
subsystem and Q) the set of possible probabilities of the second subsystem.

e [or each pair (P,Q), by the observed probabilities set, we mean that set

P.-Q def {p-q:p€ P,qec Q} of possible products p - q when p € P and

q€eQ.

Observation: the product case can be reduced to the sum case. The
logarithm of the product is equal to the sum of the logarithms. Thus, when
the observed probabilities are equal to the products p; - g;, the logarithms of

these observed probabilities are equal to the sums a; + b;, where a; def In(p;)

and b; def In(g;). Thus, by taking the logarithms, we can reduce this case to
the case of the sum, and so get the following results.

Definition 4. We say that the pair (P,Q) is product-generic if the following
numbers are all different:

e all the ratios p/p’ # 1 between elements of the set P,
e all the ratios q/q' # 1 between elements of the set Q, and

e all the products (p/p’) - (¢/q') of these ratios that are not 1.

Proposition 4. For every two natural numbers n > 1 and m > 1, the set of
all non-product-generic pairs (P, Q) with n elements in P and m elements in Q
has Lebesque measure 0.

Discussion. In other words, almost all pairs (P, Q) are product-generic.

Proposition 5. If (P,Q) and (P’,Q’) are product-generic pairs for which P -
Q=P -Q, then:

o cither PP =P and Q' = Q,
e or PP=Q and Q' = P.

Discussion. If we did not have the condition that the sum of P-probabilities
be equal to 1, we would have uniqueness modulo multiplication of all proba-
bilities by a constant. However, due to this condition, in the product-generic
case, we can uniquely reconstruct the components P and @ from the observed
probabilities set S = P - Q.

Proposition 6. There ezists a quadratic-time algorithm that, given a finite set
S of positive real numbers:

e checks whether this set can be represented as S = P - Q for some product-
generic pair (P, Q), and

e if S can be thus represented, computes the elements of the corresponding
sets P and Q.

Proof. In line with the general reduction, we form the set L of logarithms
of the elements of S, then apply the algorithm from Proposition 3 to these
logarithms, and, if the set L can be represented as a Minkowski-sum A + B,
take p; = exp(a;) and ¢; = exp(b;).

We can then normalize these probabilities to take into account that Y p

>4 =1, i.e., we should take

act _
P =

0;
Pyt = ' and ¢@* =
Pk

Alternatively, we can avoid computing exp and In functions, and deal directly
with the ratios and product instead of sums and differences of logarithms. Let
us describe this idea in detail.

We are given the observed set S. If this set can be represented as a product,
we want to find the values p;1 > ... > p, and ¢1 > ... > ¢, for which the
products p; - g; are exactly the elements of the given set S.

1°. Let us first sort all s elements of the given observed set S in decreasing
order:
€1 > €9 > ... > €E4.

As we have mentioned, sorting requires time O(s - In(s)).

2°. Let us take p; = e; and ¢; = 1, then we have p; - ¢1 = e1. Let us also take
q2 = ez/eq, then ey = py - g2 and q1/q2 = e1/ea.

3°. Let us now try all pairs (e;, e;) and find all the pairs for which e;/e; = e;/ea.
Testing all the pairs requires time O(s?). If S is the desired product, then the
number of such pairs is n — the number of elements in the set P — and if we sort
the largest elements of these pairs in the decreasing order, we will get elements

Uy =P1-qL>U2=P2°G1 > ... > Up =Pn " q1.

Thus, based on these elements u;, we get p; = u;/q1, i.e., since we chose ¢; = 1,
we get p; = u;.

4°. Let us now find all the pairs (e;, e;) for which e;/e; = p1/p2. Testing all the
pairs requires time O(s?). If S is the desired product, then, as we have shown
in the previous proof, the number of such pairs is m — the number of elements
in the set B — and if we sort the largest elements of these pairs in the decreasing
order, we will get elements

V1 =PpP1-q1>V2=P1°G2>...>Up =D1" qmn-

Thus, based on these elements v;, we get ¢; = v;/p1, i.e., since we chose p1 = eq,
we get ¢; = v;/er.

5°. Finally, we form the list of all the products p; - ¢;, sort it (which takes time
O(s - 1n(s))), and check that the sorted list coincides element-by-element with
the original sorted list e; > eg > ... If it does, this means that the given set can
be represented as P -) — and we have (after normalization) the desired sets P
and Q. If the two lists are different, this means that the given set S cannot be
represented as the product.

Numerical example. Let us consider the case when P = {0.2,0.8} and Q =
{0.3,0.7}. In this case, the set of observed probabilities is S = {0.06,0.24,0.14,0.56}.
Let us show how the above algorithm will, given this set S, reconstruct the
component-related sets A and B.

1°. Let us first sort all the elements of the given observed probabilities set in
decreasing order:

e1 =0.56 > e3 =0.24 > e3 = 0.14 > e4 = 0.06.

2°. Let us take p; = e; = 0.56 and ¢q; = 1, then we have p; - ¢1 = e;. Let us
also take go = ea/eq = 0.24/0.56 = 3/7, then es = p; - g2 and q1/g2 = e1/ea.

3°. Let us now try all pairs (e;,e;) and find all the pairs for which e;/e; =
e1/es = 0.56/0.24 = 7/3. There are exactly n = 2 such pairs:

10

e the pair (0.56,0.24) and
e the pair (0.14,0.06).

Thus, we conclude that n = 2. If we sort the largest elements of these pairs in
the decreasing order, we will get elements

up =e1 = 0.56 > us = eg = 0.14.

Thus, based on these elements u;, we get p; = u;/q1, i.e., since we chose ¢; = 1,
we get p; = u;, i.e., p1 = 0.56 and po = 0.14.

4°. Let us now find all the pairs (e;, e;) for which e; /e; = p1/ps = 0.56/0.14 = 4.
There are exactly two such pairs:

e the pair (0.56,0.14) and
e the pair (0.24,0.06).

If we sort the largest elements of these pairs in the decreasi ng order, we will
get elements
v = 0.56 > vy = 0.24.

Thus, based on these elements v;, we get ¢; = vj/eq, i.e., g1 = 0.56/0.56 = 1
and g2 = 0.24/0.56 = 3/7.

5°. Finally, we form the list of all the products p; - ¢;:
p1-q1 =0.56-1=0.56, py-q1 =0.14-1=0.14,
p1-g2 =0.56-(3/7) =0.24, py-q2 =0.14-(3/7) = 0.06.
If we sort these numbers in a decreasing order, we get

0.56 > 0.24 > 0.14 > 0.06,

i.e., exactly the original sorted sequence of elements of the set S. Thus, the set
S can be represented as a combination of two independent components.

To find the actual probabilities p?** and q;‘Ct of each component, we need to
normalize the values p; and g¢;:

0.56 0.56
p?’Ct = pl = = = 087
p1+ P2 0.56 +0.14 0.7
0.14 0.14
ngt = p2 = = = 02;
p1+p2 0.56+40.14 0.7
act q1 1 1
= = = =7/10=0.7;
O Tt 1+3/7 10/7 /
3/7 3/7
ger= 2 BT 3T g0 3,

@ +q 1+3/7 10/7

This is exactly what we needed to reconstruct.

11

Acknowledgments

This work was supported in part by the National Science Foundation grants
1623190 (A Model of Change for Preparing a New Generation for Professional
Practice in Computer Science), and HRD-1834620 and HRD-2034030 (CAHSI
Includes), and by the AT&T Fellowship in Information Technology.

It was also supported by the program of the development of the Scientific-
Educational Mathematical Center of Volga Federal District No. 075-02-2020-
1478, and by a grant from the Hungarian National Research, Development and
Innovation Office (NRDI).

References

[1] Th. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, MIT Press, Cambridge, Massachusetts, 2009.

[2] R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics,
Addison Wesley, Boston, Massachusetts, 2005.

[3] K.S. Thorne and R. D. Blandford, Modern Classical Physics: Optics, Fluids,
Plasmas, Elasticity, Relativity, and Statistical Physics, Princeton University
Press, Princeton, New Jersey, 2017.

12

