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Abstract—Psychologists have shown that most information
about the mood and attitude of a speaker is carried by the
lowest (fundamental) frequency. Because of this frequency’s
importance, even when the corresponding Fourier component
is weak, the human brain reconstruct this frequency based on
higher harmonics. The problems is that many people lack this
ability. To help them better understand moods and attitudes
in social interaction, it is therefore desirable to come up with
devices and algorithms that would reconstruct the fundamental
frequency. In this paper, we show that ideas from soft computing
and computational complexity can be used for this purpose.

Index Terms—soft computing, fundamental frequency, social
interactions, computational complexity

I. OUTLINE

According to psychologists, the fundamental frequency
components of human speech carry the bulk of information
about the mood and attitude of the speaker. Because of the
importance of the fundamental frequency signal, even when
the actual Fourier component corresponding to this frequency
is absent, the brain automatically reconstructs this frequency.

The problem is that many people lack this automatic ability
and thus, miss important speech-related social cues. In this
paper, we use the ideas from soft computing and computa-
tional complexity to reconstruct the fundamental frequency
component and thus, to help these people better understand
the social aspects.

The structure of this paper is as follow. In Section 2, we
explain what is fundamental frequency, why it is important,
and why reconstructing this frequency is important. In Section
3, we explain ideas about this reconstruction motivated by soft
computing and computational complexity. In Section 4, we
explain that these ideas indeed help.

This work was supported in part by the National Science Foundation
grants 1623190 (A Model of Change for Preparing a New Generation for
Professional Practice in Computer Science), and HRD-1834620 and HRD-
2034030 (CAHSI Includes), and by the AT&T Fellowship in Information
Technology.

It was also supported by the program of the development of the Scientific-
Educational Mathematical Center of Volga Federal District No. 075-02-2020-
1478, and by a grant from the Hungarian National Research, Development
and Innovation Office (NRDI).

II. WHAT IS FUNDAMENTAL FREQUENCY AND WHY IT IS
IMPORTANT

Speech uses different frequencies. Some people have lower
voice, some higher ones. In physical terms, this difference
means that the sounds are – locally – periodic with different
frequencies:

• lower frequencies for lower voices,
• higher frequencies for higher voices.

Fundamental frequency and harmonics. Every periodic
signal x(t) with frequency f0 can be represented as a sum
of sinusoids corresponding to different frequencies f = f0,
f = 2f0, . . . :

x(t) = A1 · sin(f0 · t+ φ1)+

A2 · sin(2f0 · t+ φ2)+

. . .+

An · sin(n · f0 · t+ φn)+ (1)

. . .

for some coefficients Ai ≥ 0 and φi; this is known as the
Fourier series; see, e.g., [2]–[4], [6], [13], [16], [19].

The lower frequency f0 – corresponding to the given period
– is known as the fundamental frequency. Frequencies f =
n · f0 for n > 1 are known as harmonics.

The overall energy of the signal is equal to the sum of
energies of all the harmonics, and the energy of each harmonic
is proportional to the square A2

n of its amplitude. Since the
overall energy of the signal is finite, in general, this means that
the amplitudes of the harmonics decrease with n – otherwise,
if the amplitudes did not decrease, the overall energy would
be infinite.

This is not just a mathematical representation of audio
signals: in the first approximation, this is how we perceive
the sounds: there are, in effect, biological sensors in our ears
which are attuned to different frequencies f ; see, e.g., [5],
[18].



Which frequencies are most useful for conveying infor-
mation. We can convey information by slightly changing
the amplitude of each harmonic during each cycle. Higher-
frequency harmonics have more cycles and thus, can convey
more information.

Because of this, most information is carried by such high-
frequency harmonics; see, e.g., [17].

Which frequencies are most useful for conveying mood
and attitude. In addition to information, we also want to
convey our mood, our attitude to the person. This attitude is
not changing that fast, so the best way to convey the attitude is
to use harmonics which are changing the slowest – i.e., which
have the lowest frequency.

And indeed, most such socially important information is
conveyed on the lowest frequencies, especially on the lowest
– fundamental – frequency; see, e.g., [11].

In most people, the brain automatically reconstructs the
fundamental frequency. Because of the social importance of
understanding the speaker’s mood and attitude, our brain is
actively looking for this information. So, even when the actual
fundamental frequency is suppressed, our brain reconstructs it
based on the other harmonics.

For example, while many people have very low voices, with
fundamental frequencies so low that these frequencies are cut
off by the usual phone systems, we clearly hear their basso
voices over the phone – because in most people, the brain
automatically reconstructs the fundamental frequency.

Related problem. The problem is that for many people, this
reconstruction does not work well. As a result, these people
do not get the mood and other social information conveyed
on the fundamental frequency – a big disadvantage in social
interactions.

It is therefore desirable to come up with some signal trans-
formation that would help these people detect the fundamental
frequency.

III. IDEAS MOTIVATED BY SOFT COMPUTING AND
COMPUTATIONAL COMPLEXITY

Where can we get ideas: a general comment. We would like
to use computers to help people reconstruct the fundamental
frequency. In other words, we need to find an appropriate
connection between people’s brains and computers.

In general, if we want to find a connection between two
topics A and B, a natural idea is:

• either to start with topic A and try to move towards
topic B,

• or to start with topic B and try to move towards topic A.
Let us try both these approaches.

Let us start with the brain: ideas motivated by soft
computing. Let us first analyze what we can get if we start
with the brain side, i.e., with the what-we-want side. From this
viewpoint, what we want is to somehow enhance the signal
x(t) so that the enhanced signal will provide the listener with
a better understanding of the speaker’s mood and attitude.

Since we started from the brain side, not from the computer
side, naturally the above goal is imprecise, it is not formu-
lated in terms of computer-understandable precise terms, it is
formulated by using imprecise (“fuzzy”) words from natural
language. Our ultimate objective is to design a computer-based
gadget that would pursue this goal. Thus, we need to translate
this goal into computer-understandable form.

The need for such a translation has been well known since
the 1960s, when it was realized that a significant part of expert
knowledge is formulated in vague natural-language terms. To
translate this knowledge into precise terms, Lotfi Zadeh came
up with an idea of fuzzy logic, in which we describe each
imprecise property like “small” by assigning:

• to each possible value of the corresponding quantity,
• a degree to which this value satisfies the property of

interest – e.g., is small;
see, e.g., [1], [10], [12], [14], [15], [20]. Fuzzy techniques
are a particular case of what is known as soft computing –
intelligent techniques motivated by not-fully-precise ideas like
neural networks or evolutionary computations.

If our case, the desired property is “being informative”;
• when the signal is 0, we gain no information;
• the stronger the signal, the more information it conveys.

The simplest way to capture this idea is to have a degree d
which is proportional to the signal’s strength x(t):

d = c · x(t)

for some constant c.
We want to enhance this information. In terms of fuzzy

techniques, what does enhancing mean? In general, it means
going:

• from tall to very tall,
• from strong to very strong, etc.

In fuzzy approach, the easiest way to describe “very” is to
square the degree. For example:

• if the degree to which some value is small is 0.7,
• then the degree to which this value is very small is

estimated as 0.72 = 0.49.
So, whenever the original degree was proportional to x(t)
– corresponding to the signal x(t) – the enhanced degree
is proportional to (x(t))2 – which corresponds to the signal
(x(t))2. Thus, from the viewpoint of soft computing, it makes
sense to consider the square (x(t))2 of the original signal.

An important point is what to do with the sign, since the
signal x(t) can be both positive and negative while the degree
is always non-negative. So, we have two choices.

The first choice is to take the formula (x(t))2 literally, and
thus to consider only non-negative values for the enhanced
signal.

The second choice is to preserve the sign of the original
signal, i.e.:

• to take (x(t))2 when x(t) ≥ 0 and
• to take −(x(t))2 when x(t) ≤ 0.

In the following text, we will consider both these options.



What if this does not work. What if we need an additional
enhancement? From the viewpoint of fuzzy techniques, if
adding one “very” does not help, a natural idea is to use
something like “very very” – i.e., to apply the squaring twice
or even more time.

As a result, we get the idea of using (x(t))n for some n > 2.

What if we start with a computer: ideas motivated by
computational complexity. Because the desired signal en-
hancement is very important for many people in all their
communications, we want the signal enhancement to be easily
computable – not just available when the user has access to a
fast computer.

In a computer, the fastest – hardware-supported – operations
are the basic arithmetic operations:

• addition and subtraction are the fastest,
• multiplication is next fastest, and
• division is the slowest.

So, a natural idea is to use as few arithmetic operations as
possible – just one if possible – and to select the fastest
arithmetic operations.

Using only addition or subtraction does not help – these are
linear operations, and a linear transformation does not change
the frequency. So, we need a non-linear transformation, and the
fastest non-linear operation is multiplication. At each moment
of time t, all we have is the signal value x(t), so the only
thing we can do is multiply this signal value by itself – thus
getting (x(t))2.

Similarly to the soft computing-motivated cases, we can
deal with the sign in the same two different ways, it does
not change the computation time.

And similarly to the soft computing case, if a single
multiplication does not help, we can multiply again and again
– thus getting (x(t))n for some n > 2.

Discussion. The fact that two different approaches lead to the
exact same formulas makes us confident that these formulas
will work. So let us analyze what happens when we try them.

IV. THESE IDEAS INDEED HELP

What if we use squaring. Let us start with squaring the signal.
We consider the case when the component corresponding to
fundamental frequency – i.e., proportional to A1 – is, in effect,
absent, i.e., when for all practical purposes, we have A1 = 0.
In this case, the general formula (1) takes the form

x(t) = A2 · sin(2f0 · t+ φ2)+

A3 · sin(3f0 · t+ φ3)+ (2)

. . .

Since, as we have mentioned, in general, the effect of higher
harmonics – proportional to An – decreases with n, in the
first approximation, it makes sense to only consider the largest
terms in the expansion (2) – i.e., the terms corresponding to
the smallest possible n.

The simplest possible approximation is to consider only the
second harmonic, i.e., to take

x(t) ≈ A2 · sin(2f0 · t+ φ2).

However, in this case, all we have is a periodic process with
frequency 2f0, all the knowledge about the original funda-
mental frequency f0 is lost. Thus, to be able to reconstruct
the fundamental frequency f0, we need to consider at least
one more terms, i.e., take

x(t) ≈ A2 · sin(2f0 · t+ φ2)+

A3 · sin(3f0 · t+ φ3), (3)

in which, as we have mentioned, A2 > A3.
Since A2 > A3, the main term in (x(t))2 is proportional to

A2
2. However, we cannot restrict ourselves to this term only,

we need to take A3-term into account as well. Let us therefore
take into account the next-largest terms proportional to A2 ·A3.
Thus, we get

(x(t))2 = A2
2 · sin2(2f0 · t+ φ2)+

2A2 ·A3 · sin(2f0 · t+ φ2) · sin(3f0 · t+ φ3). (4)

From trigonometry, we know that cos(x) = sin(x+ π/2),

sin2(a) =
1

2
· (1− cos(2a)) =

1

2
· (sin(2a+ π/2)),

and

sin(a) · sin(b) = 1

2
· (cos(a− b)− cos(a+ b)) =

1

2
· (sin(a− b+ π/2)− sin(a+ b+ π/2)).

Thus, we have

(x(t))2 =
A2

2
− A2

2
· sin(2f0 · t+ φ2 + π/2)+

A2 ·A3 · sin(f0 · t+ (φ3 − φ2 + π/2))−

A2 ·A3 · sin(5f0 · t+ (φ2 + φ3 + π/2)),

hence, in this case, (x(t))2 indeed contains a component with
fundamental frequency.

What if the fundamental frequency component in (x(t))2

is not large enough. In this situation, both soft computing
and computational complexity approaches recommended using
(x(t))n for larger n. Will this work? Let us analyze this case.

To perform this analysis, let us take into account that:
• while we usually consider time to be a continuous vari-

able,
• in reality, any sensor – be it biological sensors in our ears

or electronic sensors – only measures values at several
moments of time t1 < t2 < . . . < tN during each cycle.

In these terms, a signal is represented by an N -dimensional
tuple

(x(t1), . . . , x(tN )).



At one of these moments of time, the absolute value of
the signal takes the largest value during the cycle. In the N -
dimensional space of all such tuples, tuples for which |x(ti)| =
|x(tj)| for some i ̸= j form a set of smaller dimension – thus,
a set of measure 0. Thus, for almost all tuples, such an equality
is not possible – and hence, the largest absolute value of the
signal is only attained at one single point on this cycle.

Let us denote this point – where maximum is attained – by
tm. This means that for all other moments of time t, we have
|x(t)| < |x(tm)|, i.e.,

|x(t)|
|x(tm)|

< 1.

As n increases, the ratio

|x(t)|n

|x(tm)|n
=

(
|x(t)|
|x(tm)|

)n

tends to 0. Thus, as n increases, the signal (x(t))n tends to the
function that is equal to 0 everywhere except for one single tm
on each cycle. Such a function is known as a delta-function
δ(t− tm).

It is known that the Fourier transform of the periodic
delta-function contains all the components – including the
component corresponding to fundamental frequency – with
equal amplitude. Thus, even if the square (x(t))2 does not
have a visible fundamental frequency component, eventually,
for some n, the signal (x(t))n will have this component of
size comparable to all other components – and thus, visible.

Limitations of squaring. Squaring the signal works well when
the original signal x(t) does not have a visible fundamental
frequency components. However, if x(t) has a strong com-
ponent corresponding to fundamental frequency – e.g., if this
component prevails and we have

x(t) ≈ A1 · sin(f0 · t+ φ1),

then squaring leads to

(x(t))2 =
A2

1

2
· (1− sin(2f0 · t+ 2φ1 + π/2)),

i.e., to signal that no longer has any fundamental frequency
component – indeed, it is periodic with double frequency 2f0.

So, in principle, we should consider both:
• the original signal x(t) and
• its square (x(t))2.

It is desirable to have a single signal instead.
One such possibility is to have sign-modified signal

(x(t))2 · sign(x(t)),

where:
• sign(x) = 1 for x > 0 and
• sign(x) = −1 for x < 0.

Indeed, in this case:
• even if the original signal is a pure sinusoid

x(t) ≈ A1 · sin(f0 · t+ φ1)

with frequency f0,
• its transformation has a non-zero Fourier coefficient A′

1

– since this coefficient is proportional to∫
sin(f0 · t) · sin2(f0 · t) · sign(sin(f0 · t)) dt =∫

| sin(f0 · t)| · sin2(f0 · t) dt > 0.

Preliminary confirmation. Our preliminary simulation exper-
iments confirmed these theoretical findings; see, e.g., [7]–[9].
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