Invariance Explains Empirical Success of Many
Intelligent Techniques
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Abstract—In many applications of intelligent computing, we
need to choose an appropriate function — e.g., an appropriate
re-scaling function, or an appropriate aggregation function. In
applications of intelligent techniques, the problem of selecting an
optimal function is usually too complex or too imprecise to be
solved analytically, so the best functions are found empirically,
by trying a large number of alternatives. In this paper, we
show that in many such cases, the resulting empirical choice can
be explained by natural invariance ideas. Example range from
applications to building blocks of intelligent techniques — such as
aggregation (including hierarchical aggregation) and averaging
— to method-specific (polynomial fuzzy approach, pooling and
averaging in deep learning) and domain-specific application,
such as describing relative position of 2D and 3D objects,
gauging segmentation quality, and perception of delay in public
transportation.

Index Terms—intelligence techniques, re-scaling, aggregation,
invariance

I. FORMULATION OF THE PROBLEM

Need to find dependencies. One of the main objectives of
science is to predict the future state of the world, and one of
the main objectives of engineering is to find out what can be
done to make this future state better.

The state of the world is characterized by the values of rele-
vant quantities. For example, to predict tomorrow’s weather in
a given area, we need to predict temperature, humidity, wind
speed, wind direction, and other characteristics in different
locations within the area of interest. To predict the future state
of the world, we can use the current values of these and related
quantities. So, to make a successful prediction, we need to
know how exactly the future value of each quantity depends
on these current values. In computational terms, what we need
to know is an algorithm. In mathematical terms, what we need
to know are functions describing such dependencies.

Similarly, our possible actions can also be characterized by
different numerical parameters. To make the future state better,
we need to know how the values of the future state depend
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on these parameters. In such problems, we also need to know
a function.

Need for intelligent techniques. In many physics situations
and in many problems in other application areas, we know the
desired function. For example, in celestial mechanics, we know
exactly how to predict the future locations and velocities of
celestial bodies based on their current locations and velocities
— and based on our knowledge about the masses of these
bodies.

However, in many other situations, we do not know the exact
dependencies. In such situations, at best, we have some partial
imprecise knowledge — knowledge that need to be handled by
various intelligent techniques such as fuzzy, neural, etc.

Need for empirical selection of appropriate functions.
These techniques provide many different options. Many of
these options require selecting a function — e.g., selecting
an activation function for a neural network. Usually in a
problem, only some of possible options lead to a success.
Which option is more successful depends on the situation.
So, to be successful, we need to empirically select the best
option — and thus, the best function.

What we do in this paper. In this paper, we summarize
the results of empirically selecting best functions in different
intelligent techniques. We show that in many such cases, the
empirical success of the selected function can be explained by
their invariance with respect to natural transformations.

These examples include techniques on all level of abstrac-

tion:

« techniques for basic sub-stages of intelligent techniques,
e.g., for aggregation and averaging of data points;

o techniques specific for large segments of the correspond-
ing intelligent techniques, e.g., the use of non-linear
functions in Takagi-Sugeno-type fuzzy control and the
use of pooling and averaging in deep learning; and

« intelligent techniques for analyzing specific objects: 1D
time series (e.g., related to public transportation), 2D and
3D images (geographical and medical), etc.

From the mathematical viewpoint, our examples will fall

into the following three categories:

¢ in some cases, we need to select a single function;



« in other cases, we need to select a family of functions;
and

« in yet other cases, we need to select the best aggregation
operation that combines several quantities and/or several
functions.

II. INVARIANCE: A BRIEF REMINDER

Shift and scaling. We want to work with the actual values of
physical quantities. What we actually work with are numerical
values of these quantities. This is not just a linguistic distinc-
tion: the numerical value of a quantity depends not only on its
actual values, it also depends on our selection of a measuring
unit. The same height of 1.7 m gets a different numerical value
170 when described in centimeters. In general, if we switch
from the original measuring unit to a new unit which is A
times smaller, then all numerical values of the corresponding
quantity get multiplied by A:  — X - x. This transformation
is known as it scaling.

For many quantities like time and (macro-level) tempera-
ture, the numerical value also depends on our selection of the
starting point. In general, if we select a new starting point
which is z¢p units smaller than the previous one, then this
value z( is added to all the numerical values: z — x + xg.
This transformation is known as shift.

Invariance. In many practical situations, there is no preferred
measuring unit and no preferred starting point. In such sit-
vations, it makes sense to requires that the corresponding
dependencies not depend on these choices.

For example, if we are interested in the dependence y =
f(z) between two quantities « and y, and there is no preferred
measuring unit for measuring x, then it is reasonable to require
that the dependence look the same if we use a different
measuring unit and, thus, different numerical values of the
quantity z, namely, the values X = X\ - z.

Of course, we cannot simply require that the formula y =
f(x) remains the same: that would means that y = f(z) =
f(X) = f(\-z) for all x and \, which would imply that f(z)
is a constant. This may sound like a problem until we realize
that, e.g., the formula d = v - ¢y that described how far a body
with velocity v can travel during time ty. This formula does
not depend on what unit we use to describe velocity, but if we
change a measuring unit for velocity, e.g., from km/h to miles
per hour, we need to also appropriately change the measuring
unit for distance.

Thus, we should require that for every A > 0, there should
be an appropriate transformation y — Y for which y = f(z)
always implies Y = f(X). This is what is usually meany by
invariance. In this paper, we will show how invariance explains
many empirical choices.

III. FUNCTIONS OF ONE VARIABLE: WHICH
DEPENDENCIES ARE INVARIANT

General case. In general, if we change both the measuring unit
and the starting point, we get a generic linear transformation
T — \-x+x0. So, in the ideal case, we should be looking for

dependencies f(x) which are invariant with respect to both
types of transformations.

In precise terms, such invariance means that for every A > 0
and for every z, there exists corresponding values ;& > 0 and
1o depending on A and zg, so that:

e every time we have y = f(x),
o we also have Y = f(X) for the same function f, where
X=Xzx+zoand Y = pu(\ xo) -y + yo(A, xo)-
Substituting the expressions for X and Y into the formula
Y = f(X), we get

whzo) -y +yo( N, xo) = f(A-z+ x0).

Here, y = f(x), so we get

f()‘ e .130) = M()\,.%‘o) : f(l‘) + yO()‘axo)'

Unfortunately, every measurable solution of this functional
equation is a linear function (see, e.g., [29]). So, if we want
to describe non-linear dependencies — and many real-life
dependencies are non-linear — we cannot require invariance
with respect to both scaling and shift, we can only require
one type of invariance. Let us see what we can conclude if
we make such requirements.

Possible cases. For each of the quantities  and y, we have
two possible classes of transformations: scalings and shifts.
Thus, we can have four possible cases:

o the case when a scaling of x leads to an appropriate
scaling of y;
« the case when a scaling of x leads to an appropriate shift
of y;
« the case when a shift of x leads to an appropriate scaling
of y; and
o the case when a shift of x leads to an appropriate shift
of y.
Let us consider these four cases one by one. After that, we
will show, on several examples, that invariance explains the
empirical success of the corresponding intelligent techniques.

Scaling-scaling case. In this case, for every A > 0, there exists
a corresponding value 1 > 0 depending on A so that:

« every time we have y = f(x),
« we also have Y = f(X) for the same function f, where
X=XzandY = p(\)-y.
Substituting the expressions for X and Y into the formula
Y = f(X), we get

W)y = fO\ ).
Here, y = f(z), so we get
f-z) =p(A) - fz).

It is known (see, e.g., [1]) that every differentiable solution of
this functional equation has the form

fla)=4-a"



for some real numbers A and a (see also [29] for a detailed
proof of this and related statements). Thus, in this case, we
get the power law.

Comments.

o If we do not require differentiability, if we only require
that the function f(x) is measurable, then we can have
different coefficient A for positive x and for negative x.
A good example of such a not-everywhere-differentiable
function is the Rectified Linear (ReLU) activation func-
tion f(x) = max(0,z) used in deep neural networks;
see, e.g., [13].

e A similar formula can be obtained in the multi-
dimensional case, when the desired quantity y depends on
several variables x1,...,x,. In this case, we can select a
new measuring unit for each of the n inputs, leading to
x; — A\; - ;. Thus, the requirement that the dependence
not depend on the selection of measuring units means
that for every tuples of the values A\; > 0, ..., A, > 0,
there exists a corresponding value . > 0 depending on
A1,..., Ay so that:

— every time we have y = f(xq,..
— wealsohave Y = f(Xy, ..., X,,) for the same func-
tion f, where X; = A\;-x; and Y = p(Aq, ..., ) y.
Substituting the expressions for X and Y into the formula
Y = f(X), we get

Tn)s

O A g = FO 1, A - ).
Here, y = f(x1,...,2,), SO we get
FOq -z, ) = (A, An) - g, xn).

It is known (see, e.g., [1], [29]) that every differentiable
solution of this functional equation has the form

f(xl,..

for some real numbers A, aq, ...

QAn
n

a
GTp)=A-xit - x
5> Q.

Scaling-shift case. In this case, for every A > 0, there exists
a corresponding value yo depending on A so that:

« every time we have y = f(x),
o we also have Y = f(X) for the same function f, where
X=A-zand Y =y + yo.

Substituting the expressions for X and Y into the formula
Y = f(X), we get

y+yoN) = f(A-2).
Here, y = f(x), so we get
fA-z) = f(2) + yo(A).

It is known (see, e.g., [1], [29]) that every diferentiable
solution of this functional equation has the form

fl@)=A-ln(z)+a

for some real numbers A and a. Thus, in this case, we get a
logarithmic dependence.

Shift-scaling case. In this case, for every zg, there exists a
corresponding value ;1 > 0 depending on x( so that:
« every time we have y = f(x),
o we also have Y = f(X) for the same function f, where
X=xz+xoand Y = p(xo) - y.
Substituting the expressions for X and Y into the formula
Y = f(X), we get

w(xo) -y = f(z + x0).
Here, y = f(x), so we get

f(x +w0) = p(xo) - f(2)-

It is known (see, e.g., [1], [29]) that every measurable solution
of this functional equation has the form

f(x) = A-exp(a-x)

for some real numbers A and a. Thus, in this case, we get an
exponential dependence.

Shift-shift case. In this case, for every z(, there exists a
corresponding value yo depending on zq so that:
o every time we have y = f(x),
o we also have Y = f(X) for the same function f, where
X=x+2x0and Y =y + yo(z0)-
Substituting the expressions for X and Y into the formula
Y = f(X), we get

Y+ yo(z0) = f(x + o).
Here, y = f(z), so we get

f(z+m0) = f(z) + yo(xo)-

It is known (see, e.g., [1], [29]) that every measurable solution
of this functional equation has the form

fl@y=A-z+4+a

for some real numbers A and a. Thus, in this case, we get a
linear dependence.

Comment. A similar formula can be obtained in the multi-
dimensional case, when the desired quantity y depends on
several variables xi,...,x,. In this case, we can select a
starting point for each of the n inputs, leading to x; — x;+x¢;.
Thus, the requirement that the dependence not depend on the
selection of the starting point means that for every tuples of
the values g1, ..., Zon, there exists a corresponding value y
depending on g1, ..., Zo, so that:

o every time we have y = f(x1,...,2,),

o we also have Y = f(X3,...,X,,) for the same function

f, where X; = 2, + zp; and Y = y + yo(zo1, - - -, Ton)-

Substituting the expressions for X and Y into the formula
Y = f(X), we get

y+yo(zot, -, Ton) = f(x1 4+ To1,. .., Tn + Ton).
Here, y = f(z1,...,%,), SO we get
f(l‘l-i-],‘()l, - ,l‘n—Fﬂfon) = f(],‘l, - ,xn)—i—yo(xm, L. ,.ron).



It is known (see, e.g., [1], [29]) that every measurable solution
of this functional equation is a linear function

f(l'l,...,

for some real numbers A, aq, ...

Tn)=A+ar -1+ ...+ ay Ty,
, Q-

Applications of these results. Intelligent technique process
data. This can be 1D data — e.g., several values of measuring
the same quantity, or it can be 2D (or even 3D) data corre-
sponding to images. Let us show that the above invariance
result can be used to explain empirical successes of intelligent
techniques in processing both types of data.

Invariance explains empirical successes of intelligent tech-
niques for processing 1D data. There are many effective
techniques for data processing, when we have the results
z1,...,ZT, of measuring or estimating several quantities, and
we need to estimate the values of related quantities y =
flx1,...,x,) — e.g., predicting tomorrow’s weather based on
today’s meteorological data (and on the historical meteorolog-
ical data). Somewhat surprisingly, the existing techniques are
not as good in a seemingly much simpler 1D problem: when
we have several measurements and/or estimates 1, ..., Z, of
the same quantity x, and we would like to “average” them,
i.e., to combine them into a single estimate.

In practice, we usually assume that the estimation errors are
independent and normally distributed. The normal distribution
assumption is justified by the Central Limit Theorem (see,
e.g., [30]), according to which the joint effect of many small
independent factors — which is usually the case — is close
to normal. Under this assumption, if we do not have any
information about which estimate is more accurate, then it
is natural to assume that all estimates are equally accurate.
In this case, the optimal resulting estimate is the arithmetic

average [30]:
i=1

In other cases, we know the accuracy of each estimate, i.e., in
precise terms, we know the corresponding standard deviations
o;. In such cases, the optimal estimate has the form

n
i=1

for some weights w; > 0 for which

i=1

The optimal weights depend on the standard deviations o;:

S|

T =

—2
o

-2
2. 0;
J=1
The problem is that for many quantities, we have many
different scales, and the average depends on what scale we use.
For example, we can describe the strength of an earthquake

by the released energy, or when we can describe it by the
logarithm of this energy. So, instead of averaging the original
values x;, we can average the transformed values z; = g(z;),
for some non-linear function g(z), resulting in

n
z = E W; - 2 =
i=1

and then re-scale back into the original scale, resulting in

T=g"" <Z w; '9(%‘)) ;

i=1

n
=1

1=

where g~!(z) denote the inverse function.

Which function g(z) should be use to get the most accurate
results? It is reasonable to require that the transformation
g(x) is invariant. Depending on which type of invariance we
assume, we get either power law, or logarithmic dependence,
or the exponential dependence, or the linear function. For
linear functions, the above expression leads back to arithmetic
average. For other cases, we get different averaging operations.
Namely, power-law g(z) leads to

n 1/a
T = E w; - x ,
i=1

logarithmic dependence g(x) leads to

n
=]
i=1
and the exponential dependence leads to

_ 1 -
T=- -In Zwi~exp(a-xi)
i=1
In the limits a — oo and a — —oo, the power-law formula
leads to

Z = max(r1,...,%,)

and to

T =min(zy,...,Z,).

Interestingly, these are exactly the empirically observed av-
eraging operations; see, e.g., [2], [3]. Thus, in this case, the
empirical effectiveness is also explained by invariance.

Comment. In some cases, the most effective averaging oper-
ations are more complex. One example of such an averaging
operation is so-called Lehmer means [2], [3], [7]

This operation can also be explained by scale-invariance:
namely, it is the result of applying a scale-invariant function
of two variables

y=flyi,y2) = yi-y5 *Y



to averaging operations corresponding to scale-invariant func-
tions g1 (z) = 2% and go(x) = 2%~ %

n

a

Y1 = § Wi - Xy
1=1

Other empirically successful operation are the following op-
erations [2], [3], [34]:

1/a 1/(a—1)

n
and o = E w; ~:L'§L_1
i=1

n
fzp-E~in—|—(1—p)-min(a:l,...,a:,,,)
i=1
and
1 n
f:p~E-in—i—(l—p)-max(xl,...,xn)
i=1

for some p € [0,1]. These operations are obtained if we
apply a shift-invariant combination operation — i.e., linear
combination — to two invariant averaging operations: average
and min (or max).

Invariance explains empirical successes of intelligent tech-
niques for processing 2D and 3D data. Current image pro-
cessing techniques have achieved great performance in image
processing — e.g., in detecting objects in images, in describing
different types of well-defined relationship between these
objects; see, e.g., [13]. The current methods are, however,
not as successful in describing intuitive, imprecise relationship
between objects. We humans are accustomed to describe
relative position of objects in imprecise terms: close by, far
away, somewhat to the East, etc. We use these descriptions to
make decisions. It is therefore necessary to be able, given
a scene, to generate an appropriate description of relative
positions of different objects in such understandable natural-
language terms.

For this task, one of the most efficient methods is a
Histogram of Forces method, in which:

o for each direction,
» we integrate the force F'(r) over all the lines parallel to
this direction.

Here r is the shortest distance between points from these two
objects that happen to be on this particular line; see, e.g., [5],
[8]-[10], [21]. The effectiveness of this method depends on
the choice of the function F'(r).

Empirically, it turned out that the most effective functions
are the power laws F'(r) = A-r®. The most widely used cases
are a = 0 (constant force) and a = —2 (when the expression
is the same as for the gravitational force between two bodies),
but other values of a have also shown to be effective in some
cases, e.g., the value a = 2 [9], [10].

The power laws are exactly the functions which are scale-
scale invariant. Since, as we have mentioned, scale-scale-
invariance is a natural property, this explains the empirical
success of these functions.

Comment. In some cases, other functions F'(r) turned out to
be the most effective, e.g., the functions F(r) = min(C,r~2)

and F(r) = r¢/(r3 +1?); see, e.g., [5], [21]. In the following
text, we will show that the general invariance ideas explain
the effectiveness of such functions as well.

IV. WHICH FAMILIES OF FUNCTIONS ARE INVARIANT

Why we need families of functions. In the previous section,
we were looking for a single function that would be most
efficient in solving several problems. Often, in different ap-
plications, different functions are more effective. In this case,
instead of looking for a single function, it makes sense to look
for a finite-parametric family of functions, so that we would
be able to adjust the values of the corresponding parameters
for each individual case.
Let us analyze which families are invariant.

What families we will consider. The simplest families are
linear combinations of known functions, i.e., families of the
type

- fl(x) +...+C - fk(l‘),

where the functions fi(z),...
Ci,...,C are the parameters

, fe(x) are fixed, and
that can be adjusted.

Which families are scale-invariant and shift-invariant. In
the case of a single function, we could not require invariance
with respect to both changing the measuring unit and changing
the starting point — if we require both, we only get linear
functions.

Interestingly, for families, it is possible to require both
invariance. It turns out (see, e.g., [24]) that the only family
of functions which is both scale-invariant and shift-invariant
is the family of polynomials of a given order, i.e., the family
of all the functions of the type

f)=CL+Co-x+Cs-2°+ ... +Cp -2z L.

Comments.

A similar results holds if we consider scale-invariant and
shift-invariant families of functions of several variables:
all elements of such functions are polynomials.

o It is also possible to require only shift-invariance or
only scale-invariance; see [24]. If we require only shift-
invariance, then all functions from the invariant family are
linear combinations of the expressions =™ - exp(a - x),
where m is non-negative integer and a is, in general,
a complex number. If we require only scale-invariance,
then all functions from the invariant family are linear
combinations of the expressions (In(z))™ -z, where also
m is non-negative integer and « is, in general, a complex
number.

Applications of this result. For this result, we will describe
two applications: a general application to intelligent systems
and a more specific application to human-oriented systems.

General application to intelligent systems. As we have
mentioned, in many situations of prediction and control, we



do not have exact knowledge of the system that we want to
control, but we have knowledge of experts who have been
successfully predicting and/or successfully controlling such
systems. The problem is that experts formulate their knowl-
edge in imprecise (‘“fuzzy”) terms, by using imprecise words
from natural language. To reformulate such a knowledge in
precise computer-understandable terms, Zadeh invented fuzzy
techniques; see, e.g., [4], [15], [22], [26], [27], [33].

One of the most successful ways to use this technique in
control is to use Takagi-Sugeno approach, where, to describe
how experts predict or control based on the inputs 1, ..., Z,,
we look for expert rules of the type

if Ai(x1),..., and A,(x,), then y = f(z1,...,2n),

when A; are fuzzy properties and f(z1,...
function.

The pioneering paper [31] showed that more effective
prediction and control can be obtained if we allow polynomial
functions f(x1,...,x,). This approach is known as polyno-
mial fuzzy approach. Since invariance is a natural property,
and all the functions from scale-invariant and shift-invariant
families are polynomials, this explains the empirical success
of polynomial fuzzy approach.

,Zn) is a linear

Application to human-oriented systems. Intelligent control
techniques are largely used in situations when the objective
is clear. For human-oriented system, an additional challenge
is that for such systems, the goal is subjective, it deals with
perceptions and not with objective characteristics. To design
such systems, we need to be able to predict such perceptions,
i.e., we need to know how a human will react to different
situations.

As a case study, let us consider the planning of public
transportation — an important feature of big cities and of
their smart-city plans. The goal of planning is to make the
public transportation as convenient to people as possible.
The main source of inconvenience is waiting time. Part of
the waiting time is causes by the fact that the buses (and
other means of public transportation) go by schedule, so a
passenger has to wait for the next scheduled bus. This is a
known inconvenience, people get adjusted to it — by taking the
bus schedule into account when planning their trips. A much
more serious inconvenience occurs when the buses are behind
schedule. Such situations are unpredictable, they interfere with
people’s plans and cause a lot of frustration. According to [32],
there are several levels of such frustration, corresponding to
10, 20, and 60 minutes: delay below 10 min are perceived
as negligible, delays between 10 and 30 min are perceived as
short, delays between 30 and 60 minutes are perceived as long,
and delays longer than 60 minutes are perceived as severe.

According to decision theory (see, e.g., [11], [12], [16],
[19], [23], [25], [28]), people’s attitudes can be described
by a function called utility — the larger the utility the more
beneficial the situation. Utility is defined modulo possible
linear transformation u +— A - u + ug for some A > 0 and
ug.

Very small changes in a situation lead to very small, barely
noticeable changes in utility. Let us denote by Aw the smallest
noticeable change in utility. In this case, if we take, as a
starting point for measuring utility, the value corresponding
to no delay, the first noticeable change 10 min correspond to
utility —Aw, the second (30 min) to —2Aw, and the third one
(60 min) to —3Auw.

In general, how can we describe the dependence ¢ = f(u)
of delay time ¢ on utility u? This dependence may be different
for different people, so us makes sense to select not a single
function ¢ = f(u), but a whole family of functions. Since
utility is defined modulo scalings and shiftsm, it is reasonable
to require that this family should be scale-invariant and shift-
invariant. Thus, it must be a family of polynomials.

The simplest polynomials are linear functions, but a linear
dependence would mean that a change from 5 min delay to 15
min delay is as painful as a change from 60 min delay to 70
min delay. In reality, if we have already waited for the bus for
the whole hours, additional 10 minutes are not as painful as
in the first case, when the delay time triples. To capture this
difference — which is not reflected in the linear dependence —
we need to go beyond linear functions. The simplest family
of polynomials that includes non-linear functions is the family
of all quadratic polynomials. And indeed, quadratic functions
perfectly explain the above empirical dependence: if we select
parameters C; of the quadratic function t(u) = Cy + Cy -
u+ Cs - u? to make sure that t(0) = 0, t(—Au) = 10, and
t(—2Au) = 30, we will get

5 5
C1 =0, Cg——m, C3—W.
For these values, we get t(—3Au) = 60, exactly what the
empirical data shows.

So, in this case, invariance also explains an empirical

dependence.

Comment. Interestingly, the dependence of amount of money
on the utility is also quadratic — see, e.g., [14] — and for the
same reason: a change from $5 to $15 causes much more
positive feelings than a change from $60 to $70.

V. WHICH AGGREGATION OPERATIONS ARE INVARIANT

What is an aggregation operation. In many practical situ-
ations, we need to combine (aggregate) two or more values.
For example, when we know the masses m; and mgy of two
objects, their total mass m is equal to the sum of their masses:
m = mj + ms. When we have two independent random
variables with known standard deviations ¢ and o9, then the
standard deviation o of their sum is equal to \/o? + 3. The
function that transforms the original values a; and as into
a new value is known as an aggregation operation. We will
denote such operations by a; * as.

The combination result should not depend on the order, so it
is usually assumed that this operation should be commutative:
a1 * as = aq * a1. For the same reason, often, associativity is
required. In most practical situations, it is reasonable to require



monotonicity: if a; < a} and as < af, then we should have
a; xaz < aj xaj.

Aggregation operations and averaging operations. Once
we have an aggregation operation a; * as, we can define the
corresponding averaging operation: it transforms the values
ai,...,ay, into the value a for which a1 *...*xa, = ax*...*xa.
For example, if we start with the sum aq * as = a1 + a2, then
we get arithmetic average

a1+...
n

+an

If we start with the product a1 * as = a1 - as then we get
geometric average /aj - ... - G, etc.

Which aggregation operations are invariant. Let us first
consider scale-invariance, i.e., the property that if a = a; *as,
then, for every A\ > 0, we should have A = A; x A,
where A = X-a, A1 = X-aq, and Ay = )\ - aq. It is
known (see, e.g., [17]) scale-invariant, commutative, associa-
tive, continuous, and monotonic aggregation operations are:
ay * az = (a¥ +ay)'/?, its limit cases a; * az = max(ay, as)
and a; * ag = min(ay,as) corresponding to v — oo and
v — —00, and the trivial operation for which a; * as = 0 for
all a; and as.

If we also require shift-invariance, i.e., require that a =
a1 * ag imply that A = A x Ay, where A = a + ag, A1 =
a1+ag, and As = as+ag, then the only remaining non-trivial
aggregation operations are min and max. If instead we require
a weaker version of shift-invariance, where a = a; *a; imply
that A = Ay x Ay for Ay = a1 + ag, Ay = as + ag, and
A = a+ af(ap) for some value aj, depending on ag, then we
also get addition — which, as we have mentioned, corresponds
to the arithmetic average.

Applications. As promised, we will show that the above
results explain effectiveness of empirical intelligent techniques
on all levels of abstraction:

« on the level of general techniques — in this case, it will
be deep learning,

« on the level of specific applications — in this case, it will
be applications to imaging, and

« on the level of building blocks — in this case, it will be
aggregation.

Applications to deep learning. One of the main ideas behind
deep learning — as compared to few-layers traditional neural
networks — is that we have more layers and, correspondingly,
fewer neurons in each layer. In the traditional neural network,
when we had a large number of neurons in each layer — in
particular, in the input layer — we could allocated, to each
input value, a corresponding input neuron. In deep learning, in
situations when we process a large amount of data — e.g., pixels
forming an image — there is much fewer neurons in the input
layer than there are inputs. So, we need to combine several
inputs into a single value. This process is known as pooling.
Since it is reasonable to require that this operation be scale-
invariant and — at least weakly — shift-invariant, it is reasonable

to use max-pooling, min-pooling, or average pooling. These
are indeed three most widely used pooling operations in deep
learning [13]. Thus, the empirical success of these operations
can also be explained by invariance [17].

Another problem of machine learning in general — and of
deep learning in particular — is that its results are not always
reliable. In general, a natural way to increase the reliability
is to duplicate efforts, i.e., to have several similar devices
working in parallel, and then to somehow average their results.
This is, e.g., how we get the most accurate time — by having
three or more super-precise clocks working in parallel and by
averaging their results. Similarly, to increase reliability of a
neural network, we simultaneously train several networks —
i.e., in effect, subnetworks of the overall network, and then
average the results. Thus, it makes sense to use averaging
corresponding to invariant aggregations, e.g, arithmetic aver-
age — which is also one of the two most empirically effective
averaging methods [13], [17]. (The other empirically effective
method is geometric average that corresponds to v — 0.)

First application to image processing. Now it is time to go to
the image processing example. As we have mentioned earlier,
scale-invariance leads to the power law F'(r) = A-r®. In some
cases, some values a are better, in other cases, other values
of a are better. It is therefore reasonable to try to aggregate
functions corresponding to different values a, so that the
resulting function combine the advantages of both aggregated
expressions. By applying a scale-invariant aggregation, we
get either an expression ((A; - %) 4+ (Ag - 792)?)1/?, or
max(A; -1, Ag-r®), or min(A; -7, Ay-r?2). In particular,
if you apply the simplest of such combinations — min — to the
most successful cases a; = 0 and ay = —2, we get one of
the hybrid force formulas F(r) = min(C,r~2,C) that was

empirically shown to be effective. For v = —1, A; = 1,
Ay = T(Q), a; = 0, and a; = —2, we get another empirically
successful formula F(r) = 73/(r2 + r?). Thus, invariance

explains these empirical successes as well.

Second application to image processing: gauging quality of
skin lesion segmentation. Not only we need to make intelli-
gent techniques more reliable, we also need to be able to gauge
how reliable they are. A study [18] provides a new method
for this gauging, which the authors illustrate on the case
study of skin lesion segmentation. This new method combines
taking the arithmetic average — of several images provided by
different subnetworks, and taking min — namely, the minimum
of the distances from each pixel to different points on the
boundaries between the segments. These are exactly the scale-
invariant and (weakly) shift-invariant aggregation operation.
Thus, invariance explains the empirical success of (at least
this part of) the new method.

Application to building blocks of intelligent techniques:
hierarchical aggregation. Aggregation does not have to be
performed in one step. For example, to get an average temper-
ature on campus, it makes sense first to aggregate temperature
values within each room — if the room has several sensors, then



combine these values to get an average of rooms, and then
aggregate the building averages to get the overall campus av-
erage. The study of different aggregation techniques described
in [20] showed that — in line with the above-mentioned result
— the best results emerge when on each aggregation stage,
we use min, max, or arithmetic average. Thus, this empirical
result is also explained by invariance.

Comment. The paper [20] has an additional empirical obser-
vation: that on the first aggregation levels, it is advantageous
to use min and max, while on the following levels, arithmetic
average works better. This fact can be explained by the fact
that with some small probability, sensors malfunction, and
produce readings which are much larger or much smaller than
the actual temperature. So:

¢ On the earlier aggregation stages, when we combine the

readings of a small number of sensors, the probability that
one of the readings is an outlier is still small. So, with
probability close to 1, the max and min of these readings
reflect the actual highest and lowest temperature in the
room.

On the other hand, on the later aggregation stages, we
combine, in effect, a large number of readings. In this
cases, there is a high probability that at least one of the
combined values is an outlier. Thus, if we simply use max
or min to aggregate, with high probability, we will get this
outlier — and not the desired highest or lowest temperature
on campus. Since we cannot use max or min, the only
remaining option is to compute the arithmetic average.
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