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Abstract—In many cases, experts are much more accurate
when they estimate the ratio of two quantities than when they
estimate the actual values. For example, if it difficult to accurately
estimate the height of a person on a photo, but if we have two
people standing side by side, we can easily estimate to what
extent one of them is taller than the other one. To get accurate
estimates, it is therefore desirable to use such ratio estimates.
Empirical analysis shows that to obtain the most accurate results,
we need to compare all the objects with either the “best” object
– i.e., the object with the largest value of the corresponding
quantity – or the “worst” object – i.e., the object with the smallest
value of this quantity. In this paper, we provide a theoretical
explanation for this empirical observation.

Index Terms—expert estimates, best-worst method, estimation
accuracy

I. INTRODUCTION

Formulation of the practical problem. In many application
areas, we rely on human estimates of different quantities.
For example, when police investigates a crime, they rely on
witnesses’ estimates of the suspect’s height and/or weight. In
general:

• we have n objects, and
• for each object i, i = 1, . . . , n, we want to know the

corresponding value ai of a quantity a.

Estimates ãi of untrained people are usually not very
accurate – and thus, not very helpful. What we humans are
much better at is comparing different values. For example:

• if we see two people, especially if we see then side by
side,

• then we can conclude that one of them is, e.g., 20% taller
than the other.

Similarly:

• an instructor may not be able to accurately predict how
exactly each student will perform on a test, but

• usually, instructors can predict who will do better and
who will do worse, and how better and how worse.
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So, for some pairs (i, j), we ask the user to estimate the
ratio

ai
aj

of the corresponding values. Based on these estimates, we want
to reconstruct the values of the desired quantities.

Practical limitation. In general, the more information we
have, the more accurate the resulting estimate. From this
viewpoint:

• the more questions we ask about different pairs,
• the better.

However, as the number of objects increases, the number of
pairs increases quadratically, as

n · (n− 1)

2
∼ n2.

For large n, it becomes un-realistic to ask questions about all
the pairs. With such possibility in mind, it is necessary to ask
the smallest possible number of questions. A natural idea is:

• to select one of the objects i0, and
• to only ask for ratios between this object and all other

objects.

Empirical fact. It has been shown that we can get the most
accurate estimates:

• either if we compare all the quantities with the smallest
one,

• or if the compare all the quantities with the largest one;
see, e.g., [4]. This is known as the best-worst method.

What we do in this paper. In this paper, we provide a
theoretical explanation for this empirical result.

II. LET USE FORMULATE THIS PROBLEM IN PRECISE
TERMS

What we mean by reconstructing the values ai. In order
to formulate the problem in precise terms, let us first clarify
what we mean by reconstructing the values ai.

Of course, if we only know the ratios, we cannot uniquely
determine the actual values. Indeed:

• if we multiply all the values ai by the same constant c,
• then the ratios remain the same, while
• the numerical values change.



To avoid this non-uniqueness, a natural idea is to select some
object i0 for which we simply take anewi0

def
= ãi0 .

This means, in effect, that we replace the original measuring
unit with a new one, which is

ãi0
ai0

times smaller than the original measuring unit. In terms of this
unit, the new values anewi of the desired quantity take the form

anewi = ai ·
ãi0
ai0

.

Since we multiply all the values of the quantity by the same
constant

c =
anewi0

ai0
,

the ratios remain the same:
anewi

anewj

=
ai
aj

.

A natural question. A natural question is: which object i0
should we select?

Once we selected i0, how can we reconstruct the values
ai? If our estimates of the ratios were exact, then, in principle,
by comparing all the objects with the selected object i0, we
could get the exact values of all the quantities ai:

• either as
ai =

ai
ai0

· ai0

• or alternatively, as

ai =

(
ai0
ai

)−1

· ai0 .

In practice, we do not know the exact ratios
ai
aj

,

we only know the estimates wij for these ratios:

wij ≈
ai
aj

.

So, by using these estimates instead of the actual ratios, we
can provide estimates ãi for the desired quantity by using:

• either the formula ãi = ãi0 · wii0 ,
• or, alternatively, the formula ãi = ãi0 · w−1

i0i
.

But is there a difference between these two approaches? At
first glance, it may look like it does not matter what method
we use, since the estimated ratios

fracaiai0 and
ai0
ai

are simply inverses to each other, so a consistent person should
select estimates which are inverses as well, i.e., estimates for
which

wii0 =
1

wi0i
.

However, it is well known that people are not perfectly
consistent (see, e.g., [2]). So, in general, these two estimates
will lead to results:

• which are exactly mutually reverse and
• which, thus, may lead to different estimates for the values

ai of the desired quantity.

Need to take uncertainty into account. In practice, as we
have mentioned, we can only estimate the ratios with some
accuracy. Let us denote the accuracy with which we estimate
the ratios by ε:

• This can be the mean square value of the difference
between the actual ratio

ai
aj

and our estimate wij .
• This can also be the largest possible absolute value of

this difference ∣∣∣∣ aiaj − wij

∣∣∣∣ .
How shall we compare different selections. Since the ratios
are only known with some inaccuracy, the resulting estimates
of ai are also inaccurate, i.e., they contain, in general, approx-
imation error. In this paper, we will use two ways to compare
the accuracy of different approaches:

• by comparing the worst-case approximation error and
• by comparing the mean square approximation error;

see, e.g., [3], [5].
Now, we are ready to formulate the corresponding problem

in precise terms.

III. PRECISE FORMULATION OF THE PROBLEM AND THE
RESULTING SOLUTION: CASE WHEN EXPERTS ESTIMATE

THE RATIOS ai/ai0

Description of the case. Let us first consider the case when
we ask experts to provide estimates wii0 for the ratios

ai
ai0

.

What is the approximation error of estimating ai. In this
case, we estimate ai as wii0 ·ãi0 . We have denoted the accuracy
of estimating the ratio wii0 by ε. Let us analyze how this affect
the accuracy of estimating ai.

For this purpose, let us denote the approximation error of
approximating any quantity x with its approximate value x̃ by
∆x

def
= x̃− x. For ai, the exact value – in the new measuring

unit – is
ai =

ai
ai0

· ãi0 ,

while our estimate of this value is equal to ãi = wii0 · ãi0 .
Thus, the approximation error ∆ai

def
= ãi − ai is equal to

∆ai =

(
wii0 −

ai
ai0

)
· ãi0 = ∆wii0 · ãi0 ,



where we denoted

∆wii0
def
= wii0 −

ai
ai0

.

So, the desired approximation error ∆ai of estimating ai is
obtained from the approximation error ∆wii0 of estimating the
corresponding ratio by multiplying it by ãi0 . Thus, whether we
talk about the accuracy as the mean square approximation error
or the largest possible approximation error, the accuracy δi
with which we estimate ai can be obtained from the accuracy
ε of estimating wii0 by multiplying it by the same the same
number ãi0 (see [3], [5]):

δi = ε · ãi0 .

Worst-case approach. In the worst-case approach, we min-
imize the worst-case approximation error, i.e., we minimize
the quantity

δ
def
= max

i ̸=i0
δi = ε · ãi0 .

Thus, to minimize this approximation error, we need to select,
as the reference object i0, the object with the smallest possible
value of ai. This explains one of the choices that turned out
to be empirically successful.

Mean-square approach. In the mean-square approach, we
minimize the mean-square approximation error, i.e., we min-
imize the quantity

δ
def
=

√
1

n− 1
·
∑
i ̸=i0

δ2i =

√
1

n− 1
·
∑
i̸=i0

(ε · ãi0)2 = ε · ãi0 .

This is the exact same expression as in the worst-case ap-
proach. So, to minimize this approximation error, we also need
to select, as the reference object i0, the object with the smallest
possible value of ai – which is exactly one of the choices that
turned out to be empirically successful.

IV. PRECISE FORMULATION OF THE PROBLEM AND THE
RESULTING SOLUTION: CASE WHEN EXPERTS ESTIMATE

THE RATIOS ai0/ai

Description of the case. Let us now consider the case when
we ask experts to provide estimates wi0i for the ratios

ai0
ai

.

What is the approximation error of estimating ai. In this
case, we estimate ai as w−1

ii0
·ãi0 . We have denoted the accuracy

of estimating the ratio wii0 by ε. Let us analyze how this affect
the accuracy of estimating ai.

In general, suppose that we approximate a quantity x by
a value x̃, with approximation error ∆x

def
= x̃ − x, we have

x = x̃ − ∆x, and then we use this estimate to estimate the
value y = f(x) for s given function f(x). In this case, our
estimate ỹ for y is obtained by plugging in the approximate

value x̃ into the formula y = f(x), i.e., ỹ = f(x̃). Thus, the
approximation error ∆y of estimating y is equal to

∆y = ỹ − y = f(x̃)− f(x) = f(x̃)− f(x̃−∆x).

Approximation errors are usually small, so that terms which
are quadratic or higher order in terms of these errors can be
safely ignored; see, e.g., [1], [6]. For example, for the accuracy
of 20%, the square is 4% which is much smaller. So, we
expand the right-hand side of the above expression for ∆y
in Taylor series and safely ignore quadratic and higher order
terms – leaving only linear terms in this expansion. As a result,
we get

∆y = f ′(x̃) ·∆x,

where f ′(x), as usual, means the derivative.
Whether we look for the largest possible absolute value of

∆y or for its mean-square value, this value can be obtained
by multiplying the accuracy of approximating x by |f ′(x)|;
see, e.g., [3], [5].

In our case, we have x = wi0i and f(x) = x−1 · ãi0 ,
thus f ′(x) = −x−2 · ãi0 . So, the accuracy δi with which we
approximate ai is equal to

δi = w−2
i0i

· ãi0 · ε.

Here,

wi0i ≈
ai0
ai

≈ ãi0
ãi

,

so

w−2
i0i

≈
(
ãi0
ãi

)−2

=
(ãi)

2

(ãi0)
2
,

and thus,

δi ≈
(ãi)

2

(ãi0)
2
· ãi0 · ε =

(ãi)
2

ãi0
· ε = (ãi)

2 · 1

ãi0
· ε.

Worst-case approach. In the worst-case approach, we min-
imize the worst-case approximation error, i.e., we minimize
the quantity

δ
def
= max

i
δi = max

i ̸=i0
(ãi)

2 · 1

ãi0
· ε.

Thus, to minimize this approximation error, we need to select,
as the reference object i0, the object with the largest possible
value of ai. This explains another of the two choices that
turned out to be empirically successful.

Mean-square approach. In the mean-square approach, we
minimize the mean-square approximation error, i.e., we min-
imize the quantity

δ
def
=

√
1

n− 1
·
∑
i ̸=i0

(ãi)4 ·
1

ãi0
· ε.

To minimize this approximation error, we also need to select,
as the reference object i0, the object with the largest possible
value of ai – which is exactly one of the choices that turned
out to be empirically successful.



V. CONCLUSIONS

To accurate estimate the values of a quantity based on expert
estimates, it is important to take into account that experts
estimate the ratios of different values much more accurately
than the values themselves. It is therefore advisable to select
one object, and to ask the expert to compare all other objects
with the selected one.

Empirical analysis shows that to achieve the best accuracy,
we should select, as the reference object, either the “best”
object – i.e., the object with the largest value of the quantity
of interest – or the “worst” object, i.e., the object with the
smallest value of this quantity. In this paper, we have provided
a theoretical explanation for this empirical fact.
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