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Abstract—In the late 1990s, researchers analyzed what distin-
guishes great companies from simply good ones. They found sev-
eral features that are typical for great companies. Interestingly,
most of these features seem counter-intuitive. In this paper, we
show that from the algorithmic viewpoint, many of these features
make perfect sense. Some of the resulting explanations are simple
and straightforward, other explanations rely on complex not-well-
publicized results from theoretical computer science.

Index Terms—Good to great companies, algorithmics, seem-
ingly counter-intuitive ideas

I. FORMULATION OF THE PROBLEM

How can we all be more effective? To become more
effective, a natural idea is to learn from those who are already
more effective than everyone else. In line with this natural
idea, a group of researchers analyzed several companies that
succeeded in drastically improving their performance – what
features these companies have in common that other less
successful companies don’t have. The results of this analysis
appeared in a book form [1]. In this book, companies that suc-
ceeded in drastically improving their performance are called
good-to-great ones.

The book emphasized that:
• while the analysis was limited to companies,
• these features will most probably be helpful to everyone

who wants to become more effective, be it companies,
universities, or even individuals.
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Many of the revealed features are somewhat counter-
intuitive. The book’s analysis showed that many specific
features of good-to-great companies are counter-intuitive. This
makes some sense – if these features were more intuitive, most
companies would follow them and achieve similar successes.
So, a natural questions is:

• Why these seemingly counter-intuitive features help the
companies succeed?

• How can we explain this empirical phenomenon?

What we do in this paper. In this paper, we provide such
an explanation for many of these features, features that we
perceived as the most important ones. We list these features
in the “chronological” order, namely, in the order in which
these features are important on different stages of company
development. Each of these features is analyzed in a separate
section:

• we start each such section with describing the feature;
• then we explain why this feature seems counter-intuitive;

and
• finally, we provide a possible explanation of why this

seemingly counter-intuitive feature has led to successes.

Comment. Of course, the book contains many more features
than we cover here. We tried our best to select the main ones,
but other features may be important too, so we encourage
others to seek explanations for other features as well.

II. FIRST WHO THEN WHAT

Description of the feature. In all the analyzed successful
companies, their motion from good to great started not with
selecting the application area, but by selecting a team: first
who then what.



Selecting right people is more important than selecting a
domain or selecting a proper technology – technology can
enhance or inhibit the success but it is secondary in predicting
which companies will become great.

Why this feature seems counter-intuitive. This sounds
counter-intuitive because common sense tells us that to suc-
ceed in some task, we need to have people who are specialists
in this task. How can we decide who to invite to the team if
we have not yet decided what the task will be?

One of the common criticisms of management is that often,
managers move from one area to another one – e.g., from
soft drinks to car manufacturing – and the fact that they do
not know much about the new area makes them much less
effective.

On the university level, you do not first hire people with
high IQ and then decide whether to make them Department
of Physics or Department of Computer Science.

Why this feature is actually important for success: our
explanation. One of the great achievements in theoretical
computer science is the not-well-publicized result that all well-
formulated complex problems are, in effect, equivalent to each
other; see, e.g., [14], [20]. Let us explain it in detail.

A well-formulated problem is a problem in which it is easy
(or at least feasible) to check whether we have solved this
problem or not, i.e., in precise terms, for which there exists a
feasible algorithm that, given a candidate for a solution, checks
whether this candidate is indeed a solution.

• In business terms, if the goal is to increase profit by 10%,
then it is easy to check whether this result was achieved.

• In mathematical terms, if the task is to solve an equation
or a system of equations, then, if someone gives us a
candidate for a solution, we can plug in this candidate into
the equation and check whether the equation is satisfied.
The class of all such problems is usually denoted by NP.

Some problems are not in the class NP: e.g., if the goal
is optimization – such as finding the optimal trajectory for a
robot – and someone gives us a candidate solution, then, in
many cases, the only way to check that this candidate is indeed
optimal is to compare it with all other possible solutions – and
there is usually an astronomical number of possible solutions,
which makes such checking unfeasible.

Some problems from the class NP are more difficult than
others. In particular, if every instance of the general problem A
can be feasibly reduced to an appropriate instance of a general
problem B, this means that B is more difficult than A (or at
least of the same difficult). Indeed, in this case:

• if we have a feasible algorithm for solving the problem
B,

• then this reduction automatically gives us a feasible
algorithm for solving the problem A.

The breakthrough result that we mentioned is that in the class
NP, there are problems to which every other problem from
the class NP can be reduced. Such problem are known as NP-
complete. These are the problems which are the most complex.

It is believed – although no proof is known yet – that
no feasible algorithm is possible that would solve all the
instances of an NP-complete problem. This is known as P ̸=NP
hypothesis – one of the main open problems in computing.
Thus, all a feasible algorithm can do is solve some instances
of this problem.

A consequence of this result is that all such complex
problems can be reduced to each other. From this viewpoint,
it does not matter which of these problems we are solving:

• if we have a feasible algorithm for solving some instances
of one NP-complete problem,

• then for every other problem from the class NP (in
particular, for every other NP-complete problem), we
automatically get a feasible algorithm for solving some
of its instances.

In effect, what every person on a team does is solves
problems. From the above viewpoint, the efficiency of a person
does not depend on which problem he/she has been solving.
What is important is how deep are the resulting algorithms,
how many instance they cover. This is exactly what the “first
who then what” principle suggests: we select people based on
their abilities before we decide what exactly problems these
people will be solving.

This also explains why the selection of technology is
secondary:

• technology can speed up solutions,
• but available technology is based on already known

algorithms,
• and to solve more and more instances of an NP-complete

problem, beyond what people are already doing, we need
to come up with new algorithms.

III. BE THE BEST IN THE WORLD

Description of the feature. Once the team is assembled, it is
important to select the area.

Another common feature of good-to-great companies is that
they select the area in which they can have the potential be
the first (or the second best) in the world, ignoring all other
possible areas – selling the corresponding divisions, dismissing
them, making explicit “not to do” lists.

Why this feature seems counter-intuitive. This also sounds
counter-intuitive.

For example, in science, it is good to aspire to be an
Einstein, but someone need to do the mundane work. Actually,
we need a large number of people who perform mundane work
and come up with interesting experimental results for Einsteins
to have enough data to generate their genius ideas.

Why this feature is actually important for success: our
explanation. The appearance of this feature is relatively easy
to explain, it does not require any complex results – as the
above “first who then what” feature.

Indeed, we want the humanity as a whole to be the most
productive. This means that each task should be assigned to
the person who is the best in the world – i.e., the most efficient
– in performing this task:



• Einsteins – the best in the world in fundamental theoret-
ical physics – should be given a task of explaining the
experimental results.

• The task of setting up these experiments should be given
to folks who are the best in the world in experimental
physics.

• And the task of designing their shoes should be given to
those who are the best in the world in designing shoes.

IV. CONFRONT THE BRUTAL FACTS

Description of the feature. In all good-to-great companies,
all problems, all limitations are known. In particular, they are
well known to people in charge.

Why this feature seems counter-intuitive. Usually, we try
to concentrate on the positive. There are sometimes team
members that dig up lots of bad things, do we like them?
Do we really want these negative people in our teams?

Not really – but, surprisingly, this is one of the important
features that makes good companies great – and maybe one
of the reasons why few companies follow this route.

Why this feature is actually important for success: our
explanation. From the viewpoint of general decision making,
this feature is also easy to explain:

• to decide how to improve the company’s performance,
how to move the company (or any other system) from its
current state to a better future state,

• we need to have a good understanding of where we are
right now.

This includes knowing:
• not only all the good things about the current state,
• but also all the bad things, all the things that need

improvement.

V. DIFFERENCE IN OPINIONS

Description of the feature. In all the good-to-great compa-
nies, the governing board show great difference in opinions.
Every decision is made only after a heated discussion.

Why this feature seems counter-intuitive. At first glance,
these discussions slow down the progress. We have all wit-
nessed situations in which lengthy discussions unnecessarily
postpone decisions that need to be urgently made, be it :

• on the government level or
• on the level of a department.

Why this feature is actually important for success: our
explanation. Difference in opinions usually comes from dif-
ference in viewpoint. As we have mentioned in the previous
section:

• to make a right decision,
• we need to have a good understanding of the current state.

In particular, this means that for all difficult-to-measure-
directly quantities characterizing the system, we need to have
estimates which are as accurate as possible.

It is well known (see, e.g., [21]) that:

• if we have several independent estimates x1, . . . , xn of
the same quantity,

• then the arithmetic average

x =
x1 + . . .+ xn

n

of these estimates is more accurate than any of them.
For example:

• all estimates are unbiased, and the mean square error of
each estimate is σ,

• then the mean square error of the arithmetic average is
equal to

σ√
n
.

VI. IGNORE COMPETITION

Description of the feature. In many organizations, competi-
tion is important in day-by-day decisions:

• companies aspire to overcome their competition,
• universities try their best to get a higher ranking, i.e., to

overcome those who are currently ranked higher, etc.
Interestingly, in good-to-great companies, beating competition
never plays an important role in decision making.

Why this feature seems counter-intuitive. In a competitive
world, if a competitor comes up with a move that brings it an
advantage, it seems like a natural idea is to immediately react
– otherwise, we may lose.

If Airbus designs a new plane, Boeing immediately start
thinking on how to reply to this challenge. How can we ignore
the competition?

Why this feature is actually important for success: our
explanation. No matter what objective function we select,
we want to optimize this objective function. Optimization is
difficult.

There are many feasible optimization algorithms, but in
many cases, they lead to a local optimum. Once we are in
a local optimum, we need to get out of it and try to get better
results. At this stage, we are doing worse that we ourselves
did before, and – unless the competitor does the same – we
are doing worse that the competitor. However, ultimately we
will prevail if we follow the right optimization strategy.

Good optimization algorithms in the beginning, perform
worse than simple strategies such as a straightforward gradient
descent, but in the long run, they perform much better; see,
e.g., [19].

VII. CORE VALUES

Description of the feature. An important feature of all good-
to-great companies is that they all have a set of core values.
These core values serve as severe constraints on all possible
decisions that these companies make.

These constraints are different for different companies, since
the book’s list of good-to-great companies include both:

• companies aiming at improving people’s health and
• companies that specialize in tobacco products.



However, each good-to-great company has its own list of such
constraints.

Why this feature seems counter-intuitive. If our goal is
to optimize some objective function – e.g., if we want to
optimize profit – why would we want to limit our options
by imposing additional constraints and thus, possibly missing
great solutions?

There are already many legal constraints making sure that
our products do not harm people, do not harm environment,
etc. Why do we want to impose additional constraints of this
type on ourselves – especially since the competition is not
necessarily bound by these additional constraints?

Why this feature is actually important for success: our
explanation. This feature is not so easy to explain, but it can
be explained by another not-well-known result. Namely, it is
known that in many situations:

• while there is no algorithm for solving all possible
instance of a problem (e.g., of an optimization problem),

• there are algorithms that solve all the instances in which
the problem has a unique solution (see, e.g., [2]–[4], [6],
[8], [14]–[17]), and

• no general algorithm is possible even for cases when the
problem has two or more solutions; see, e.g., [5]–[10],
[13], [14], [18].

So, to make a problem algorithmically easier to solve, we need
to decrease the number of possible solutions – ideally to one.

A natural way to decrease the number of possible solution
is to impose additional constraints. The simplest example if
that a quadratic equation has, in general two solutions.

For example, the equation x2 = a has two solutions x =
−
√
a and x =

√
a. If we restrict ourselves to non-negative

solutions, we get only one solution.
This is also the idea behind regularization techniques. For

example, if we want to de-noise a noisy image, there are usu-
ally many images which are consistent ith noisy observations.
To select a unique image, we impose natural restrictions; e.g.:

• we require that the image be sufficiently smooth
• or, for an image of a starry sky, vice versa, we require

that the image consists only of a relatively small number
of practically point-wise objects.

In all these cases, adding constraints decreases the number
of possible solutions; and if we impose exactly as many
constraints as to make the remaining solution unique – we
thus make it algorithmically easier to find a solution.
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