Why 1/(1 + d) Is an Effective Distance-Based
Similarity Measure: Two Explanations
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Abstract—Most of our decisions are based on the notion of
similarity: we use a decision that helped in similar situations.
From this viewpoint, it is important to have, for each pair of
situations or objects, a numerical value describing similarity
between them. This is called a similarity measure. In some
cases, the only information that we can use to estimate the
similarity value is some natural distance measure d(a,b). In
many such situations, empirical data shows that the similarity
measure 1/(1+d) is very effective. In this paper, we provide two
explanations for this effectiveness.

Index Terms—similarity measure, distance, decision making

I. FORMULATION OF THE PROBLEM

Need for similarity measures. Many of our decisions are
based on the idea of similarity:

o if some decision was effective in similar situations,
« then it makes sense to apply a similar decision here.

If different decisions were successful in several situations
which are somewhat similar to the current one, then we should
select a decision corresponding to situations which are the
closest to the given situation. To make this selection, we need
to be able to decide which pairs of situations are more similar
and which are less similar. In other words, we need to have a
measure of similarity s(a,b) between two situations a and b
(or between two objects a and b).

We rarely have an objective measure of similarity. In most
cases, similarity is a subjective idea, it describes the expert’s
feeling. A natural way to describe this degree of similarity
s(a,b) is thus to ask the experts to estimate this degree on
some scale. A reasonable idea is to use the interval [0, 1] as this
scale. This is in line with the fact that, in effect, we are asking
experts to estimate to what extent the following statement is
true: “a and b are similar”. In the computer, “true” is usually
represented as 1, and “false” as 0, so it is natural to represent
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uncertainty by a number between 0 and 1 — as, e.g., in fuzzy
logic; see, e.g., [1], [3], [4], [7], [8], [15].

This way, to estimate the degree of similarity s(a,b) be-
tween objects a and b, we ask an expert to mark his/her degree
of similarity between the two objects on a scale of 0 to 1, so
that:

o the value s(a,b) = 1 means that the objects are perfectly

similar, practically indistinguishable;

o the value s(a,b) = 0 means that the objects are com-
pletely dissimilar, i.e., that they have nothing in common;
and

« values strictly between 0 and 1 describe the cases when
there is some similarity, but there is some dissimilarity
as well.

If experts are not comfortable providing numerical estimates
of their degree of similarity, and they can only give us binary
answers: similar or not similar — then we can ask several (n)
experts this question, and if m of them answer that the objects
are similar, use the ratio

n
as the desired degree of similarity.

Need for metric-based similarity measures. In many practi-
cal situations, we have a large number of possible objects and
situations, and it is not feasible to ask the experts about each
possible pair. What can we do?

Often, we have a naturally defined metric d(a,b) on the
class S of some objects, i.e., a function d : S x S — [0,00)
that satisfies the usual properties:

e d(a,b) =0 if and only if a = b,

e d(a,b) =d(b,a) for all a and b, and

e d(a,c) < d(a,b) + d(b,c) for all a, b, and c.

This metric describes to what extent the two objects are
dissimilar.

Thus, a natural idea is to estimate the desired degree of
similarity s(a, b) between the two objects based on this metric,
as s(a,b) = f(d(a,b)) for some function f(d).

Which function f(d) should we choose?

Natural properties of the transformation f(d). The degree
of similarity must satisfy the following natural properties:



o the degree of similarity s(a,b) should attain its largest
value s(a,b) = 1 if the objects are identical, i.e., if
d(a,b) = 0; thus, we must have f(0) =1;

« the larger the distance between the objects, the smaller the
similarity between them; thus, the function f(d) should
be strictly decreasing: if d < d’, then we should have

fd) > f(d');

« in the limit, when the objects are as far away from each
other as possible, the resulting degree of similarity should
be close to 0; in other words, as d — oo, we should have

f(d) —0.

There are many functions f(d) that satisfy these three prop-
erties. Which one should we choose?

Empirical fact: an efficient transformation. In many prac-
tical applications, the following transformation leads to a
reasonable description of similarity — that fits expert opinions
well (see, e.g., [11]):

fd)= o (1

A natural question is: why this transformation works well?

What we do in this paper. In this paper, we provide two
explanations of this empirical success. The fact that two
different explanations lead to the same formula increases our
confidence in both explanations.

II. FIRST EXPLANATION

Need to make expert estimates more accurate. When the

degree of similarity comes from a poll of n experts, we only
get n + 1 possible degrees:
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When n is small, these values provide a rather crude descrip-
tion of the actual degree of similarity.

Thus, a natural way to increase the accuracy of the estimate
is to ask more experts. This is similar to statistics, where
we can estimate the probability of an event by taking the
ratio m/n between the general number of situations n and
the number of cases m in which this event was observed. In
statistics, the larger the sample size n, the more accurate this
estimation of the probability; see, e.g., [12].

Resulting problem. To make our estimate more accurate,
we ask the more knowledgeable experts. So, at first, we
asked n top experts. Then, to increase the accuracy, we
ask n/ additional experts. These additional experts may be
intimidated by the opinion of the top experts. This intimidation
may be described in two ways:

o Additional experts may be unwilling to say anything: if
top experts are disagreeing, who are we to voice our
humble opinions? In this case, out of n + n’ experts,
we still have the same number m of experts who answer

that the objects a and b are similar. Thus, instead of the
original degree of similarity

S = 5

m
n
we have a new degree
,m
n+n'
One can easily see that the new degree s’ can be obtained
from the original degree by a transformation

s'=cy-s, (2)
where we denoted
C1 déf i .
n+n
o Alternatively, additional experts can simply side with
the majority. We are looking for cases when there is
a similarity — in this case, we can use this similarity
to make a decision — so let us consider the case when
originally, the majority of experts believed that the objects
are similar. In this case, now we have m-+n’ experts who
answer that the given objects a and b are similar. Thus,
instead of the original degree of similarity

5= —,
n

we have a new degree
, m+n
T htn
One can easily see that the new degree s’ can be obtained
from the original degree by a transformation

!
s'=c1- 854+ ca, (3)
where ,
c def n
2 = .
n—+n’

In both cases, we have linear transformations (2) and (3)
between different scales, i.e., linear functions s’ = g(s).

This is similar to measurements in general. This possibility
of a linear transformation between different scales is similar
to the fact that in measurements:
o we can select a different measuring unit, and
o for some quantities like time or temperature, we can
select a different starting point;
see, e.g., [9]. Here:
« When we use a measuring unit which is ¢; times smaller,
than all numerical values get multiplied by c;:

e e

For example, wehn we replace meters with centimeters,
then 1.7 m becomes 170 cm.

o« When we use a starting point which is ¢y units earlier
than the original one, then this value ¢y is added to all
numerical values:

X — T+ Co.



If we change both the measuring unit and the starting point,
then we get a general linear transformation

c— 1T+ Co.

In measurements, we often also have nonlinear transforma-
tions. For example:

o The energy of an earthquake can be measured either by
its energy, or by the logarithm of its energy — which is
the usual Richter scale.

o Similarly, the energy of a signal can be measured in the
usual energy units, or in decibels, which is the logarithmic
scale.

In some applications, more complex transformations are used
as well.

Similarly to this, we can potentially envision non-linear
transformation between different scales of degree of similarity.
What form can these transformations have?

What are possible nonlinear transformations? Let us ana-
lyze what are reasonable transformations in general.
First of all, all linear transformations are reasonable. Also:

o If a transformation from one scale to another is reason-
able, then an inverse transformation is also reasonable.

« If we have two reasonable transformations, then applying
them one after another — i.e., performing a superposition
of these transformations — should also lead to a reasonable
transformation.

Thus, the class of all reasonable transformations should be
closed under taking the inverse and under taking the superpo-
sition. In mathematics, such classes are called transformation
groups.

Finally, our goal is to use this information in computer-
aided decision making. In each computer, we can only store
finitely many values, so it makes sense to limit ourselves to
classes of transformations which are determined by finitely
many parameters. Such transformation groups are called finite-
dimensional.

So, the question of which transformations are reasonable
can be reformulated as a question of what are the possible
finite-dimensional transformation groups that contain all linear
transformations. A general description of such groups was
conjectured by Norbert Wiener, the father of Cybernetics, in
[14]. This conjecture was proved in [2], [13]. In particular, in
the 1-D case, when we confider functions of one variables,
the conclusion is that all the transformations from each such
group must be fractionally linear, i.e., have the form

(z) = A-x+ B
(see also [6] for the 1-D proof).

(4)

Let us apply this conclusion to our case. Both the similarity
measure s(a,b) = f(d(a,b)) and the original metric d(a,b)
describe the similarity between the two objects a and b. Thus,
we can consider similarity and metric as representing the same
quantity in two different scales. So, based on what we have

concluded, the transformation f(d) between these two scales
must be fractionally-linear, i.e., must have the form

f(d)—A'd_FB

1+ C-d’
for some A, B, and C.
To find the values of these three parameters, let us recall
the above-mentioned properties of the function f(d):
o that f(0) =1,
o that f(d) — 0 as d — oo, and
o that f(d) is a decreasing function of d.

(3)

Substituting d = 0 into the formula (5) and equating the result
to 1, we conclude that B = 1, so
A-d+1
=1
For d — oo, this expression tends to
A
ok
Thus, the fact that this limit should be equal to 0 means that

(6)

i.e., that A = 0. Thus, the desired nonlinear transformation

has the form )

d)= —— . 7

@) = (7)

The requirement that the function f(d) is decreasing leads to
C>0.

From “almost exactly” to ‘“exactly”. The formula (7) is
almost exactly the formula (1). To get exactly the formula
(1), let us take into account that the distance d(a,b) can also
be described by using different measuring units.

o If for distance, we select a measuring unit which is C
times smaller than the original one,
o then the new numerical values of the distance take the
form d' = C - d.
If we describe the distance in these new units, then the formula
(7) takes exactly the desired form (1); to be more precise, the

f
orm 1

d) = .
H(d) 14+ d
Thus, we have indeed explained the emergence of the em-

pirical formula (1) — it is the only formula corresponding to
natural requirements.

III. SECOND EXPLANATION

Main idea behind the second explanation. In the first
explanation, we focused on analyzing what is the actual
dependence between the distance and the similarity. In this
explanation, we kind of ignored the fact that similarity usually
comes from people marking a value on the interval [0, 1].
However, in reality, such markings are very uncertain. There
is a well-known “seven plus minus two law” (see, e.g., [5],



[10]), according to which, in particular, when we do such types
of markings, we, in effect, only distinguish between 5 to 9
different values. Thus, the accuracy with which we mark the
similarity value ranges from 11% (corresponding to 9 classes
on the interval [0,1]) to 20% (corresponding to 5 classes on
this interval). This inaccuracy can be easily checked: if we ask
people to mark the same thing again, they may use somewhat
different values (within this accuracy).

With such imprecise values, it makes sense not to seek
exact matching of the dependence s = f(d), but rather to
look for functions which are the fastest to compute — as
have mentioned, from the very beginning, the ultimate goal
of assigning similarity values is to make decisions, and often,
we need to make decision as soon as possible. So, the question
becomes: of all the functions f(d) that satisfy the above three
conditions, which ones are the fastest to compute?

Which functions are the fastest to compute? In the com-
puter, the only directly hardware supported operations are
arithmetic operations: addition, substraction, multiplication,
and division. Everything else is computed as a sequence of
such arithmetic operations, for which the operands are:

« cither constants,

¢ or the input values,

« or the results of previous arithmetic operations.

For example, when we ask a computer to compute the values
exp(z), what the computer will actually compute is the sum
of the first few terms of the Taylor series for this functions:

2 :L'k
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exp(x)%l+ﬂ+§+...+g.
From this viewpoint, the computation time of each compu-
tation is, crudely speaking, proportional to the number of
arithmetic operations that constitute these computations. So,
the fastest computations are the ones that use the smallest

number of such arithmetic operations.

Computing f(d) must include division. Let us first explain
that computing the function f(d) must include division. In-
deed, if this computation only included addition, subtraction,
and multiplication, then we would compute a polynomial, and
polynomials do not tend to O as d — oo. Thus, at least one
arithmetic operation must be division.

Can we have just one division? Can we just have one
division? Not really. In this case, when we start with d and
constants, the only things we can get by division are

c d d

—, —,and - =1

d’ C’ d
The first two expressions do not satisfy the property f(0) = 1,
the third expression is not decreasing to 0 as d increases. Thus,
we cannot have only one arithmetic operation, we must have

at least one more arithmetic operation.

Which functions f(d) can be computed in two compu-
tational steps? The expression (1) requires two arithmetic
operations:

o first, we add 1 and d, and

o then, we divide 1 by 1+ d.
So, this is clearly one of the fastest-to-compute functions
f(d). Let us analyze what other functions f(d) satisfying all
three requirements we can compute by using two arithmetic
operations — one of which is division.

What if we perform division first: first step. If we perform
division first, we get

What if we first compute C/d. If we start with the first of
these options, then on the next step, as a second input to the
second arithmetic operation, we can have a constant or the
original value d. Thus, we have the following options:

« If the second operation is addition or subtraction, we get

C C
1 +C' or i +d.
None of these expressions satisfies the condition f(0) =
1.
« If the second operation is multiplication, we get
c , C-C C
_ = — d = .
7 C 7 C

Here, we do not get any new functions.
o If we second operation is division, then we get:

C
4 _cec o o
¢~ a4 C ~cC "
d
¢
da _C d —1-d2
d — & C ~C

The first and third expressions do not satisfy the re-
quirement that f(0) = 1, and the second and fourth are
polynomials — and we have already mentioned that the
transformation f(d) cannot be a polynomial.

What if we first compute d/C. If we start with the second
of these options, i.e., if we first compute

d 1
S o_.d
c

C )

, then on the next step, as a second input to the second
arithmetic operation, we can have a constant or the original
value d. If the second operation is addition, subtraction, or
multiplication, we get a polynomial, and we have already
mentioned that that the function f(d) cannot be a polynomial.
This, the only possible option is when the second arithmetic
operation is division. In this case, we get the following options:

1
c o c - d



In the first case we get a polynomial. In the second case, we
do not satisfy the requirement that f(0) = 1, and in the third
and fourth cases, we get constants. So, none of these options
lead to functions f(d) that satisfy all three requirements.

What if division is the second arithmetic operation. Since
the cases when division is the first arithmetic operation do
not lead to a function f(d) that satisfies all three conditions,
we need to consider the remaining cases when we perform
division only as a second arithmetic operation. In this case,
the first arithmetic operation is addition, subtraction, or mul-
tiplication. Thus, as a result of the first arithmetic operation,
we get d+ C, C —d, or C-d.

When the first arithmetic operation results in d+C, we have
d, constants, and d+ C. Thus, we have the following division
options:

o The first option is

C/
d+C"
The requirement that f(0) = 1 leads to C' = C, so this

expression is equal to
c 1
d+C 1+C-t.-d
This is exactly the expression (7) that, as we have shown,
is equivalent to (1) after an appropriate re-scaling of

distance.
« The second option is

4
d+C

which does not satisfy the condition f(0) = 1.
o The third option is
d+C 1 C
o o it
This is a polynomial, so it cannot satisfy all three condi-
tions.
o The fourth option is
d+C c

—— =1+
d er

This option does not satisfy the condition f(0) = 1.

When the first arithmetic operation is substraction, the con-
clusions are similar.

When first operation results in C' - d, we have d, constants,
and C' - d. Thus, we have the following division options:

o The first option is
O e e €
C-d d ol
So, in this case, we do not get a new function

, where

o The second option is
d 1
c-d ¢’
a constant function which is not decreasing.
o The third option is

c-a C
o~
a polynomial.
o The fourth option is
C-d
Z “_C
d )

a constant.

Summarizing. By considering all possible options, we con-
clude that the out of all functions f(d) that satisfy all three
requirements, the only functions that can be computed the
fastest — in two arithmetic steps — are the functions of type
(7), and these functions are, in effect, equivalent to the desired
formula (1). Thus, we get the second explanation of the
effectiveness of the empirical formula (1) — that this function
is the fastest to compute.
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