
From Fuzzy to Mobile Fuzzy

Victor L. Timchenko1, Yuriy P. Kondratenko2,
Olga Kosheleva3, and Vladik Kreinovich4

1Admiral Makarov National University of Shipbuilding,
9 Heroes of Ukraine Avenue

Mykolaiv 054025, Ukraine, vl.timchenko58@gmail.com

2Petro Mohyla Black Sea National University
10, 68th Desantnykiv Str.

Mykolaiv 054003, Ukraine, and
Institute of Artificial Intelligence Problems

Ministry of Education and Science (MES) of Ukraine and
National Academy of Sciences (NAS) of Ukraine

Kyiv 01001, Ukraine
y kondrat2002@yahoo.com

3Department of Teacher Education
4Department of Computer Science
University of Texas at El Paso

500 W. University
El Paso, Texas 79968, USA

3olgak@utep.edu, 4vladik@utep.edu

Abstract

The main limitation of mobile computing in comparison with regular
computing is the need to make sure that the battery last as long as pos-
sible — and thus, the number of computational steps should be as small
as possible. In this paper, we analyze how this affects fuzzy computa-
tions. We show that the need for fastest computations leads to triangular
membership functions and simplest “and”- and “or”-operations: min and
max. It also leads to the need to limit ourselves to a few-bit description
of fuzzy degrees — which leads to 3-bit descriptions similar to optical
implementation of fuzzy computing.

1



1 Formulation of the Problem

Need for fuzzy techniques. In many practical situations we rely on experts
to make good decisions. For example, in medicine, in spite of numerous successes
of automatic systems, we still rely on human doctors to make decisions.

In each application area, some experts are very good, others are not that
experienced. It would be great if everyone could be served by the best experts,
but there are usually only a few of them, and they cannot help everyone. So,
a natural idea is to incorporate the knowledge of top experts into a computer
system that will help other experts.

Experts are usually willing to share their knowledge, but the problem is that
they usually describe their knowledge in terms of imprecise (“fuzzy”) words from
natural language, and it is not easy to translate these words into computer-
understandable terms.

For example, in the US, the vast majority of people knows how to drive.
However, when you ask a person what to do if you are driving on a freeway at
a speed of 65 miles per hour and a car 30 feet in front of you slows down to 60
– a typical answer is “brake a little bit”. The problem is that computers do not
understand natural-language words like “a little bit”, they need to with what
exactly force and for how many milliseconds to apply the brakes.

Techniques for translating from “fuzzy” natural language into precise terms
are called fuzzy technqiues; see, e.g., [1, 2, 3, 5, 6, 11]. These techniques have
been successfully applied in many areas.

Specifics of mobile computing and the resulting general problem. The
main limitation of mobile computing in comparison with regular computing is
the need to make sure that the battery last as long as possible — and thus, the
number of computational steps should be as small as possible.

What we do in this paper. In this paper, we analyze how the mobile-
computing-related limitation affects fuzzy computations.

Structure of the paper. The structure of this paper is as follows. In Sec-
tion 2, we remind the readers of the main computational steps related to fuzzy
computations. In a short Section 3, we remind the readers that there are two
ways to decreases the number of computational steps: to decrease the number of
arithmetic operations and to decrease the number of bits in the representation
of the corresponding numbers. In Sections 4 and 5, we show how we can do this
for fuzzy computations. Conclusions form Section 6.

2 Fuzzy Techniques: a Brief Reminder

General idea. How can we describe terms like “little” in precise terms? For
quantities like “positive”, their meaning is very clear:

� if a number x is negative or zero, i.e., if x ≤ 0, then this number is positive;
but

2



� if a number x is larger than 9, then this number is positive.

As we go from small negative numbers to 0, our opinion about the statement
“x is positive” drastically changes from “false” to “true”. In contrast, for fuzzy
properties like “x is small”, there is no such abrupt transition:

� values x close to 0 are absolutely small,

� values x which are much larger than 0 are absolutely not small, and

� intermediate values are small to some extent.

In a computer, “true” is usually represented as 1, and “false”as 0. Thus, it is
reasonable to represent degrees of certainty intermediate between “absolutely
true” and “absolutely false” by numbers intermediate between 0 and 1.

The notion of a membership function – or, equivalently, a fuzzy set.
In line with the above general idea, each natural-language property like “small”
is described by assigning, to each possible value x of the corresponding quantity,
a degree m(x) ∈ [0, 1] to which this value x satisfies the given property – e.g.,
the degree to which x is small.

Informally, this function m(x) describes to what extent the value x belongs
to the set of all small numbers. Because of this informal description, the function
m(x) is called a membership function, or, alternatively, a fuzzy set.

Fuzzy logic: general description. In practice, expert-provided rules often
use logical connectives like “and”, “or”, and “or”. For example, in the car case,
the condition was that the speed is 65, and that the other car is at 30 ft, and
this other car slows down to 60. Medical recommendations are also full of such
rules.

These logical connectives are easy to apply if we are dealing with precise
statements. In this case, the truth values of two statements A and B uniquely
determine the truth values of the corresponding logical combinations A&B,
A ∨B, and ¬A.

The situation is different in the fuzzy case. If we know that the statement
A holds with degree of confidence 0.8, and the statement B holds with degree
of confidence 0.9, what is the degree of confidence in A&B?

Fuzzy “and”-operations. In the ideal world, we should ask the same expert
– whom we asked to gauge his/her degree of certainty in two statements A and
B – to also gauge his/her degree of certainty in the combined statement A&B.
We can do it for one or two combined statements, but for n basic statements,
there are exponentially many such combined statements, and it is not possible
to ask the expert about all of them.

Since we cannot always elicit the degree of confidence in a combined state-
ment A&B from the expert, we need to estimate this degree based on whatever
information we have – i.e., based on our degrees of confidence a = d(A) and
b = d(B) in statements A and B. In other words, we need to have a function
that would input the degrees of certainty a and b in statements A and B and

3



return the estimate for the expert’s degree of certainty in A&B. Such a func-
tion is usually denoted by f&(a, b) and is known as an “and”-operation, or, for
historical reasons, a t-norm.

“And”-operations need to satisfy several natural conditions.

� First, for the cases when both degrees are 0s and 1s, they must coincide
with the “and”-operation in the usual 2-valued (“yes”-“no”) logic.

� Second, since usually, “A and B” means the same as “B and A”, the
estimates f&(a, b) and f&(b, a) for these two statements should coincide,
i.e., we should have f&(a, b) = f&(b, a). In mathematical terms, this means
that the operation f&(a, b) must be commutative.

� Similarly, since the statements “A and (B and C)” and “(A and B) and
C” mean the same thing, the corresponding estimate f&(a, f&(b, c)) and
f&(f&(a, b), c) must also be equal. Thus, the operation f&(a, b) must be
associative.

Fuzzy “or”-operations. Similarly, we need a function f∨(a, b) that estimates
the degree of certainty in a combined statement A∨B. This function is known
as “or”-operation, or, for historical reason, a t-conorm.

“Or”-operations also need to satisfy several natural conditions.

� First, for the cases when both degrees are 0s and 1s, they must coincide
with the “or”-operation in the usual 2-valued (“yes”-“no”) logic.

� Second, since usually, “A or B” means the same as “B or A”, the estimates
f∨(a, b) and f∨(b, a) for these two statements should coincide, i.e., we
should have f∨(a, b) = f∨(b, a). In mathematical terms, this means that
the operation f∨(a, b) must be commutative.

� Similarly, since the statements “A or (B or C)” and “(A or B) or C” mean
the same thing, the corresponding estimate f∨(a, f∨(b, c)) and f∨(f∨(a, b), c)
must also be equal. Thus, the operation f∨(a, b) must be associative.

Fuzzy negation operations. To describe negation, we similarly need a nega-
tion operation f¬(a). A natural condition is that for the cases when the input
a is 0 or 1, the negation operation must coincide with the negation in the usual
2-valued (“yes”-“no”) logic.

So what is fuzzy logic. The above logical operations with fuzzy degrees
– as well as similar operations corresponding to implication and other logical
connectives – form what is known as fuzzy logic.

3 How to Decrease the Number of Computa-
tional Steps: A General Reminder

Every computation consists of elementary steps. In a computer, the only
directly hardware supported operations are arithmetic operations: addition,

4



subtraction, and multiplications. Computers also support min and max of two
numbers. All other computations, whether we are computing the value of sin(x)
or a solution of a complex partial differential equation, consist of a sequence of
arithmetic operations.

For example, computation of sin(x) is usually done by computing the sum
of several first terms in the corresponding Taylor series

sin(x) ≈ x− x3

3!
+

x5

5!
+ . . .+ (−1)k · x2k+1

(2k + 1)!
.

Out of all elementary operations:

� the fastest are min and max,

� next fastest are addition and subtraction, and

� multiplication is the slowest: this makes sense, since multiplication re-
quires several additions.

Each elementary operation consists of several bit operations. Each
arithmetic operation, in its turn, consists of several bit operations. The more
bits we use to represent each number, the more bit operations we need to preform
a single arithmetic operation.

So how can we decrease energy consumption related to computations?
Each bit operation requires some energy. Thus, to decrease energy consumption
and to make mobile devices last longer, we need to decrease the overall number
of bit operations. In line what we discussed, this means:

� decreasing the number of arithmetic operations – and selecting the fastest
operations, and/or

� decreasing the number of bit operations needed for a single arithmetic op-
eration, i.e., decreasing the number of bits used to represent each number.

In the following two sections, we will analyze how each of this ideas will affect
fuzzy computations.

4 How to Minimize the Number of Arithmetic
Operations in Fuzzy Computations

4.1 Let us start with fuzzy logical operations

How do we minimize energy consumption. To minimize energy consump-
tion, we need to select an algorithm consisting of the smallest possible number
of elementary operations, and these operations must be the fastest possible.

The smallest number of arithmetic operations that we can use is one, and
the fastest operations are – as we have mentioned – min and max; next in speed
are addition and subtraction.

5



Based on this, which “and”- and “or”-operations should we choose?
The fastest possible arithmetic operations are min and max. Interestingly:

� min satisfies all the above-described properties of the “and”-operation,
and

� max satisfies all the above-described properties of the “or”-operation.

Thus, in mobile implementation of fuzzy computations, it is reasonable to use
f&(a, b) = min(a, b) and f∨(a, b) = max(a, b).

Comment. These operations are indeed successfully used in many applications
of fuzzy techniques, where they lead to reasonable results.

Which negation operation should we choose? For negation operation, we
cannot use min or max – neither of related operations min(a, c) or max(a, c) for
some c coincides with the classical negation for both a = 0 and a = 1.

Next in speed are addition and multiplication. Among corresponding op-
erations a + c, a − c, and c − a the only one that coincides with the classical
negation for both a = 0 and a = 1 is the operation f&(a) = 1− a.

So this what we should use in mobile fuzzy computations. This operation is
indeed actively and effectively used in fuzzy applications.

4.2 What about membership functions?

What we want. We want to describe a function m(x) that assigns a number
from the interval [0, 1] to any possible value x of the corresponding physical
quantity.

What we need to take into account. It is important to take into account
that the numerical value of a physical quantity depends on the choice of the
measuring unit and on the choice of the starting point.

If we replace the original measuring unit with a new unit which is a times
smaller, then all numerical value of the corresponding quantity get multiplied by
a: x 7→ a · x. For example, if we replace meters with centimeters, all numerical
values get multiplied by 100: e.g., 1.7 m becomes 170 cm.

Changing a measuring unit leads to transformation x 7→ a · x for positive a.
Sometimes, the change of sign also makes sense: for example, which direction of
current shall we call positive and which negative is just a question of convenience.
If we change the sign, then all numerical values change sign: x 7→ −x.

Similarly, if we replace the original starting point with a new point which
is b units lower, then this value b is added to all numerical value x 7→ x + b.
For example, if instead of the French Revolution calendar – that started in year
1789 – we use the usual calendar that started b = 1789 years earlier, then, e.g.,
French-calendar Year x = 2 becomes year x+ b = 1791.

If we change both the measuring unit and the starting point, then we get a
generic linear transformation x 7→ a · x+ b.

How does this affect membership functions. We want to come up with a
general expression for a membership function, an expression that would be useful

6



even if we change the measuring unit and/or the starting point for measuring
the corresponding physical quantity. So, with each function m(x) this family of
functions should also contain all the functions of the type m(a·x+b) for different
values a and b. We will say that this family is invariant under re-scaling.

Even if we start with the easiest-to-compute function m(x) = x – that does
not require any computations at all – we will still need to consider all linear
functions m(x) = a · x+ b.

In general, computing a linear function requires two elementary operations:
multiplication and addition. If we only use one arithmetic operation, i.e., use
expressions of the type x + b, 2x, a · x, or x · x, we do not get any re-scaling-
invariant family. Thus, to get such a family, we need at least two arithmetic
operations.

The fastest operations are addition and multiplication. However, if we use
two additions or subtractions, we will get either x+ c or c− x or 2x+ c or 3x
– so again, we do not get any re-scaling-invariant family.

Thus, we need at least one operation of next computation speed – i.e., mul-
tiplication. If we use one addition and one multiplication, then we get either
x2 + c – which is not invariant – or a · x+ b.

Thus, locally, the simplest-to-compute membership functions should be lin-
ear.

Resulting recommendation. So, we should use piecewise-linear membership
functions in fuzzy mobile computing.

Comment. Piecewise-linear membership functions – with triangular and trape-
zoid shape – are indeed used frequently and effectively in applications of fuzzy
techniques.

5 How to Minimize the Number of Bits Per
Number in Fuzzy Computations

What numbers are currently used to represent degrees of confidence.
As we have mentioned, a usual way to represent a fuzzy degree is by using
numbers from the interval [0, 1]. In general, modern computers use 64 bits to
represent real numbers.

But do we really need all these bits? Using 64 bit makes sense if we are
talking about values of physical quantities – we want to preserve the accuracy
with which these values are known. However, for degrees provided by experts
this does not make much sense. Probably an expert can meaningfully distin-
guish between degrees 0.6 and 0.8, but realistically, we cannot expect anyone to
meaningfully distinguish, e.g., between degrees 0.80 and 0.81.

How many different degrees of confidence do we actually need? It is
known that people can meaningfully divide objects into no more that 7 plus
minus two categories (see, e.g., [4, 7]). This means that to adequately capture

7



human opinions, it is sufficient to use between 7− 2 = 5 and 7+ 2 = 9 different
degrees of confidence.

In general, absolutely true and absolutely false are also degree of confidence
– so they are among these ≤ 9 degrees. However, experts are practically never
absolutely 100% sure that the statement is true, and practically never absolutely
sure that the statement is false. If we exclude these two degrees – absolutely
true and absolutely false – we end up with no more than 7 different possible
expert’s degrees of certainty.

So how many bits per number do we need? To represent these degrees,
we only need 3 bits, since using 3 bits allows us to represent 23 = 8 different
degrees of confidence.

Thus, to process each fuzzy degree on a mobile device, it is sufficient to use
only 3 bits.

Comment. It it worth mentioning that the number of different distinguishable
degrees is equal to the number of different basic colors. This is not a coinci-
dence, since both numbers come from the same general seven plus minus two
law. It is therefore possible to place different degrees of confidence in 1-to-1
correspondence with colors.

This is not just a purely mathematical possibility: such a correspondence
enables us to effectively use optical computing – namely, a special color version
of it – to speed up fuzzy computations; see, e.g., [8, 9, 10].

6 General Conlusions

To minimize energy consumption when performing fuzzy computations on a
mobile device, we need:

� to use piecewise-linear membership functions (e.g., triangular and trape-
zoidal),

� to use min as “and”-operation, max as “or”-operation, and 1− a as nega-
tion operation, and

� to use 3-bit representations of all fuzzy degrees.

Good news is that many effective applications of fuzzy techniques already use
these membership functions and these logic operations, so their use should not
lead to a drastic decrease in the quality of the results.

Acknowledgments

This work was supported in part by the National Science Foundation grants
1623190 (A Model of Change for Preparing a New Generation for Professional
Practice in Computer Science), HRD-1834620 and HRD-2034030 (CAHSI In-
cludes), EAR-2225395 (Center for Collective Impact in Earthquake Science C-
CIES), and by the AT&T Fellowship in Information Technology.

8



It was also supported by a grant from the Hungarian National Research,
Development and Innovation Office (NRDI).

References

[1] R. Belohlavek, J. W. Dauben, and G. J. Klir, Fuzzy Logic and Mathematics:
A Historical Perspective, Oxford University Press, New York, 2017.

[2] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper
Saddle River, New Jersey, 1995.

[3] J. M. Mendel, Uncertain Rule-Based Fuzzy Systems: Introduction and New
Directions, Springer, Cham, Switzerland, 2017.

[4] G. A. Miller, “The magical number seven plus or minus two: some limits
on our capacity for processing information”, Psychological Review, 1956,
Vol. 63, No. 2, pp. 81–97.

[5] H. T. Nguyen, C. L. Walker, and E. A. Walker, A First Course in Fuzzy
Logic, Chapman and Hall/CRC, Boca Raton, Florida, 2019.

[6] V. Novák, I. Perfilieva, and J. Močkoř, Mathematical Principles of Fuzzy
Logic, Kluwer, Boston, Dordrecht, 1999.

[7] S. K. Reed, Cognition: Theories and Application, SAGE Publications,
Thousand Oaks, California, 2022.

[8] V. Timchenko, Y. Kondratenko, and V. Kreinovich, “Efficient optical ap-
proach to fuzzy data processing based on colors and light filter”, Inter-
national Journal of Problems of Control and Informatics, 2022, Vol. 52,
No. 4.

[9] V. Timchenko, Y. Kondratenko, and V. Kreinovich, “Decision support sys-
tem for the safety of ship navigation based on optical color logic gates”,
Proceedings of the IX International Conference “Information Technology
and Implementation IT&I-2022, Kyiv, Ukraine, November 30 — Decem-
ber 2, 2022.

[10] V. Timchenko, Y. Kondratenko, and V. Kreinovich, “Implementation of op-
tical logic gates based on color filters”, Proceedings of the 6th International
Conference on Computer Science, Engineering and Education Applications
ICCSEEA 2023, Warsaw, Poland, March 17–19, 2023.

[11] L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8, pp. 338–
353.

9


