Why Sigmoid Transtormation Helps Incorporate
Logic Into Deep Learning: A Theoretical
Explanation

15t Chitta Baral

Department of Computer Science and Engineering

Arizona State University
Tempe, AZ 85287-5406, USA
chitta@asu.edu

Abstract—Traditional neural networks start from the data,
they cannot easily handle prior knowledge — this is one of the
reasons why they often take very long to train. It is desirable
to incorporate prior knowledge into deep learning. For the
case when this knowledge consists of propositional statements,
a successful way to incorporate this knowledge was proposed in
a recent paper by van Krieken et al. That paper uses the fact
that a neural network does not directly return a truth value,
it returns a real value - in effect, the degree of confidence in
the corresponding statement — from which we extract the truth
value by fixing a threshold. Thus, the authors of the paper used
formulas for transforming degrees of confidence in individual
statements into a reasonable estimate for the degree of confidence
in their logical combinations, formulas developed and studied
under the name of fuzzy logic. However, it turns out the direct
use of these formula often leads to very slow training. That
paper showed that we can get effective training if instead of
directly using the resulting degree of confidence we first apply
a sigmoid-related transformation. In our paper, we provide a
theoretical explanation of this semi-empirical idea: specifically,
we show that under reasonable conditions, the optimal nonlinear
transformation is either a sigmoid or an (arc)tangent or an
appropriate combination of sigmoids, (arc)tangents, and their
limit cases (such as linear functions).

Index Terms—deep learning, fuzzy logic, sigmoid transforma-
tion

I. FORMULATION OF THE PROBLEM

Standard neural networks with a binary output: reminder.
One of the main applications of machine learning techniques
is to decide, based on the input, whether a certain property
P is satisfied or not, for example, whether an animal in the
picture is a dog; see, e.g., [2]. In a neural network, we usually
do not directly get the truth value of this property. Instead, we
get a real number that describes, crudely speaking, the degree

This work was supported in part by the National Science Foundation grants
1623190 (A Model of Change for Preparing a New Generation for Professional
Practice in Computer Science), HRD-1834620 and HRD-2034030 (CAHSI
Includes), EAR-2225395 (Center for Collective Impact in Earthquake Science
C-CIES), and by the AT&T Fellowship in Information Technology. It was also
supported by the program of the development of the Scientific-Educational
Mathematical Center of Volga Federal District No. 075-02-2020-1478, and by
a grant from the Hungarian National Research, Development and Innovation
Office (NRDI).

2" Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso
El Paso, TX 79968, USA
vladik @utep.edu

of confidence that this property is true. We can then set a
threshold and conclude that the desired property is true if the
degree of confidence is larger than or equal to this threshold.

Usually, to train this neural network, we use the gradient-
descent-based backpropagation algorithm.

Need to take logic into account. In many practical situations,
we are not just interested in one single property, we are
interested in checking whether a logical combination of such
properties is true. For example, when we are driving a car, our
decision to slow down or to speed up depends not only on the
presence or absence of other cars, but also on the weather, on
our own tiredness, etc. In such cases, the desired property P
is a logical combination of other properties P;,..., P,, e.g.,
a combination obtained by using the usual logical connectives
such as “and”, “or”, and “not”.

In principle, we can train n neural networks to check
whether each the properties P, ..., P, is true, and then use
the usual logical operations to come up with the truth value
of the composite property P. The limitations of this approach
is related to the fact that in general, in machine learning, the
more examples we have for training, the more accurate and
reliable the results. If we only use neural networks to check
properties P4, ..., P,, we will not be able to use the cases
when we only know whether P was true or not — while having
no information whether the properties P; were true or not.

Alternatively, we could simply train a single neural network
to check whether the property P is true — but this way, we
miss examples where we only know some of the properties P;
but not whether P was true or not. From this viewpoint, it is
desirable to somehow incorporate the logical relation between
P and P; in the neural network.

The incorporation of logic into neural networks. Such an
incorporation has indeed been proposed and successfully used;
see, e.g., [10]. This incorporation is based on the following
idea. Instead of simply applying thresholds to n separate neural
networks for checking n properties:
o we feed the original real-valued outcomes into a special
logical layer, where our degrees of confidence in state-

ment P; are transformed into a degree of confidence in
the composite statement P, and

« only after that, we apply the threshold to come up with
a definite answer.

This way:

« if we have examples when we only know some values
P;, we can train the i-th part of the resulting network,
and

« if we only know P, we can also train all the parts.

When all the logical operations are differentiable, we can use
backpropagation for this training.

In computer science, operations that transform our degree of
confidence in two statements A and B into an estimate for the
degree of certainty in logical combinations A& B and AV B
are known — they form what is known as fuzzy logic; see,
e.g., [1], [4], [5], [7], [8], [12]. The motivation for fuzzy logic
was different: it came from the need to use experts’ degrees
of certainty in individual statements to estimate the degrees
of certainty corresponding to their logical combinations —
but mathematics there is general, and many of the proposed
operations are differentiable.

For example, one of the simplest “and”-operations is the
product a - b, when we estimate our degree of confidence in a
statement A & B as the product of our degrees of confidence a
and b in the component statements A and B. Similarly, we can
estimate our degree of confidence in AV B as a+b—a-b. Both
these functions a-b and a+b—a-b are perfectly differentiable.

Need for a sigmoid transformation. If we use differentiable
fuzzy logic operations, then, in principle, we can utilize the
general backpropagation ideas to train the resulting combined
neural network. However, it turned out that in many cases,
the resulting training is too slow to be practical: the gradient
is close to 0, so backpropagation (when the changes in the
weights are proportional to this gradient) is too slow.

For example, when we initially think that both A and B
are false, with degrees of confidence a and b close to 0, and
we have new evidence that they are probably both true, the
gradient of the expression a-b is equal to (b, a), i.e., is indeed
close to 0.

Interestingly, the authors of [10] came up with an effective
solution: instead of the degree of confidence x obtained
by applying the corresponding fuzzy logic operations, we
first apply a non-linear sigmoid transformation to this value,
resulting in y = 1/(1 4 exp(—=x)). To be more precise, they:

o first perform some linear transformation x — a + b - z,

« then they apply the sigmoid, and

« then they again apply some linear transformation.

A natural question and what we do in this paper. A natural
question is: why namely this logistic transformation works and
not any other non-linear function? In this paper, we provide a
possible answer to this question.

Namely, we show that, under some reasonable assumptions,
the optimal non-linear transformation is either the sigmoid

function (or one of its limit cases) or the arctangent, or the
inverse of the sigmoid function or of the arctangent, or a
combination of these two functions and their inverses.

II. ANALYSIS OF THE PROBLEM

Let us consider a general problem. Instead of focusing on
the above specific problem — why the sigmoid transformation
turned to be successful when incorporating logic into neural
networks — let us consider this problem from the most general
viewpoint: which nonlinear transformations are optimal in
some reasonable sense?

To answer this question, let us analyze what is usually meant
by optimal.

What is optimal: analysis. In applied mathematics, when
we talk about optimality, usually we mean that we have
an objective function F'(«) that we want to maximize (or
minimize), and the optimal alternative ayp is the one that
leads to the largest possible value of this objective function.
For example:

o the optimal plan for a company is the one that leads to
the largest profit,

o the optimal algorithm for solving a large system of
equations is the one that provides, on average, the most
accurate solution, etc.

However, in practice, optimization can mean something
more complex. For example, if we have several alternatives
with the same largest possible value of the original objective
function, then we can use this non-uniqueness to optimize
something else. For example, if two algorithms have the same
average accuracy, we can select, among them, the one that has
the smallest worst-case approximation error. In this case, the
relation between two alternatives « and (3 is no longer simply
the comparison of the values F'(«) and F'(3), we need to also
known the value of the auxiliary objective function. If this does
not lead to the unique selection, this means that our optimality
criterion is not yet final, we can use this non-uniqueness to
optimize something else.

How can we describe all such possible very complex
situations? What is important is that:

« for some alternatives o and 3, we can tell that « is better
than 3; we will denote it by o > (3, and

o for some alternatives v and 3, we can tell that « is of
the same value as (3; we will denote it by o ~ 5.

Of course, these relations must be consistent: e.g., if « is better
than 3 and (is better than +, then we should have o > ~.
Thus, we arrive at the following definitions.

Definition 1. Let A be a set; its elements will be called
alternatives. By an optimality criterion on the set A, we mean
a pair of relations (>, ~) that satisfy the following properties
for all alternatives o, 8, and ~:
e ifa> P and B > v,
e ifa>fand B~ v,
e ifa~ B and B>,
e ifa~fand B ~ 7,

then o > v,
then o > ~;
then o > y;
then o ~ ~y;

o (X~ (Q
olfOzNﬁ,ﬂ’lei’lﬁNOé;
e if a > 3, then we cannot gave o ~ [3.

Definition 2.

o We say that the alternative oy is optimal with respect
to the optimality criterion (>, ~) if for every a € A, we
have either copy > O OF Qopy ~ Q.

o We say that the optimality criterion is final if there exists
exactly one optimal alternative.

We need to look for a family of transformations. We
are interested in transformations between physical quantities.
However, in a computer, we only deal with numbers, and what
number is assigned to a quantity depends on what measuring
unit and what starting point we choose. For example, we can
measure time in years or in days, we can start measuring
time at year O in our usual calendar or at the moment when
recording started, etc.

In general, if we use a measuring unit which is A times
smaller, all numerical values are multiplied by A: — A-z. For
example, 2 meters becomes 100 - 2 = 200 centimeters. If we
select a starting point which is x(units earlier than before, then
this value zq is added to all the numerical values: x — x+ xg.
By changing both, we get generic linear transformations x +—»
A x+ xg.

Such transformations make sense not only for physical
quantities like time, but also for degrees of confidence. Indeed,
one way to estimate the degree of confidence in a statement
is to poll experts. If M out of N experts believe that this
statement is true, we take the ratio M /N as the desired degree
z. To get the most accurate estimate, we should ask N top
experts in the field. As usual with statistics-like estimates, if
we want to get a more accurate estimate of the degree of
certainty, we can ask more experts. The problem is that these
additional m experts may be intimidates by opinion of top
N experts, so they either be reluctant to express any opinion
at all, or they will simply copy the opinion of the top-expert
majority. In the first case, we get M /(N +m), i.e., A-x, where
A= N/(N +m). In the second case, when most top experts
were positive, we get (M + m)/(N + m), ie., A -z + zo,
where xop = m/(N 4+ m).

In general, because of the possibility of such a re-scaling,
the same transformation y = f(x) can change its form if we
use different units for measuring x or y. Which transformation
is optimal should not depend on which unit we use, so
the transformation y = f(z) and, eg, y = f(z) + a
should be equally good. Thus, we cannot say that a single
transformation function is optimal, we should consider families
of transformation functions.

In view of the fact that we are interested in using back-
propagation, i.e., using derivatives, all transformations must
be smooth (i.e., differentiable).

Definition 3. Let r be a natural number.
e By an smooth r-parametric family of functions, we mean
a smooth mapping F' that assigns, to every real value x

and to every point (c1,...,c¢;) from some open subset
U of the set R" of all r-tuples of real numbers, a value
F(x,c1y...,¢0).

o We say that a function f(x) belongs fo the family F if
there exists values c1, ..., c, for which, for every x, we
have f(x) = F(z,c1,...,¢p).

Comment. In general, it is desirable to select a solution which
is as simple as possible. For families of functions, this means,
in particular, that we should consider families with small
number of parameters 7.

Invariance. We have already mentioned that the relative
quality of two families of transformation functions should not
depend on what measuring unit and what starting point we
use for measuring x and/or y. In addition to such linear re-
scalings, we may have different measurement scales that are
related to each other by a non-linear transformation. What are
natural non-linear transformations?

If we have a natural transformation from scale A to scale
B, then an inverse transformation should also be natural.
Similarly, if we have a natural transformation from A to B
and another natural transformation from scale B to scale C,
then their composition should also be a natural transformation
from A to C. Thus, the class of all natural transformations
should be closed under inverse and under composition. Such
classes are known as transformation groups.

We also want to make sure that all natural transformation be
implementable in a computer, and in a computer, at any given
moment of time, we can only store finitely many numbers.
Thus, the class of all natural transformations should depend
on finitely many parameters, i.e., in mathematical terms, it
should be finite-dimensional. So, natural transformations form
a finite-dimensional transformation group that contains all lin-
ear transformations. The description of all such transformation
groups was first proposed — without proof — in [11]; in [3],
[9], this description was proved to be correct. In our 1-D case,
of transformations from real numbers to real numbers, the
corresponding result states that all such natural transformations
are fractional linear, i.e., have the form

AT+ T0

l14c-z’
see also [6]. Because of this result, in the following text, we
will call such transformations natural.

As we have mentioned, it makes sense to require that the
comparison between two families of transformation functions
y = f(x) does not change if we apply a natural transformation
either to x or to y.

Definition 4.

o Let o be a family of functions, and let T be a natural
transformation. Then we denote

To(a) = {f(T(x)) : f € a} and Ty(a) ={T(f(x)) : f € a}.

o We say that the optimality criterion on the set all r-
parametric families is scale-invariant if the following two

conditions hold for or every two families o and 3 and
for every natural transformation T':
- if a> B, then Ty(a) > T,(B) and T,/(«) > Ty (B);
and

- ifa~ B, then Ty(a) ~ T, (B) and T,(c) ~ T,(B).
Now, we are ready to formulate our main result.

III. MAIN RESULT

Proposition. For r < b5, for every scale-invariant final
optimality criterion of the set of all r-parametric families,
each function from the optimal family oo, has the form
f(x) = g~ Y(const — h(x)), where g~' means the inverse
function, and each of the two functions g(x) and h(x) has
one of the following forms:

e the function can be linear, in which case its inverse is
also linear;

e the function can have the form g(x) = a-1n(b-z+c¢)+d,
in which case the inverse function takes the form

9 H(x) = A+ B-exp(C - x);

e the function can be fractional linear

(@) a+b-x
)= ———"#—
g 14+c-a’
in which case the inverse function is also fractional

linear;
e the function can have the form

g(y) = a-arctan(b+ ¢ - x) + d,
in which case the inverse function takes the form
g '(z)=A-tan(B+C - x)+ D;

and
e the function can have the form

a+b-x
= -1 —_— b
9(y) = ao ﬂ<1+c.x) + 0o,

in which case the inverse function takes the form
g '(z)=A -0(B+C-z)+ D, where

o(x) deft 1
1+ exp(—z)

Comments.

e One can show that the first three cases are, in effect,
limit cases of the fourth (arctangent) case and of the fifth
(sigmoid) case.

e When h(z) = —z and g~ '(z) is a sigmoid, we get
exactly the transformation that we want to explain.

Proof.

1°. Let us first prove that the optimal family cqp is itself
invariance with respect to transformations T, and T}, i.e., we
have T, (aopt) = Ty(opt) = Qlopt-

Indeed, the fact that the family aopt is optimal means that
for every family o, we have

o either agpy >

e OI Qiopt ~ (.
In particular, this means that for every family 7, !(«), where
T-! means an inverse transformation, we have either Qopt >

T
T Y (a) or agpt ~ T, '(a). Due to scale-invariance, this
implies that either Ty, (copt,) > @ or Ty (cvopt) ~ . This is true
for every alternative . By definition of an optimal alternative,
this means that the alternative T}, (cwpt) is optimal. However,
our optimality criterion is final, which means that there is only
one optimal alternative. Thus, Ty (opt) = Qopt-

Similarly, we can prove that the optimal family is invariant
with respect to transformations Tj,.

2°. The fact that the optimal family is scale-invariant means
that for every function f(z) from this family and for every
two fractional-linear transformations 7' and U, the function
T(f(U(zx))) also belongs to this family. We have a 3-
parametric family of transformations 7' and a 3-parametric
family of transformations U. Thus, if all the functions
T(f(U(zx))) were different, we would have a 6-parametric
family, but we know that the family is at most 5-parametric.
Hence, there exists at least a 1-dimensional family of pairs
of transformations (7, U,) depending on the parameter a for
which, for all z and for all values a and b of the corresponding
parameter, we have T, (f(U,(x))) = To(f(Up(x))).

Let us fix some value b. Then, by applying the inverse
transformation Tb_1 to both sides of this equality, we get

ta(f(Ua(@))) = f(Ub(2)), (1)

where ,(y) < T, (Tu(y))-

For any number X, we can take z = Ub_l(X), so that
Up(z) = X. Substituting this expression for x into the formula
(1), we conclude that

ta(f(ua(X))) = f(X), (2)

where we denoted ¢,(X) o U (U, H(X)).

The transformations ¢, and u, are obtained from fractional-
linear ones by using inverse and composition. Since fractional
linear transformations form a group, the transformations ¢,
and u, also belong to the same group, i.e., are also fractional
linear. So, we have a l-parametric family of pairs (4, u,)
of fractional linear transformations for which the equality (2)

holds for all X.

3°. If this property (2) holds for two pairs of transformations
(ta,uq), then it also holds for their composition and for their
inverse. Thus, such pairs form a group, and the corresponding
pairs of transformations (¢, u,) also form a group.

All 1-parametric groups are — at least locally — isomorphic,
in particular, they are all isomorphic to the group of shifts
v — v + vo. Let us denote by ¢y and wy, transformations
corresponding to v — v + vg. So, the equality (2) takes the
form

too (f (1, (X)) = F(X) 3)

for all X and vg.
Isomorphism means that there exist functions ¢(y) and
h(X) - describing this isomorphism — for which

9(te, (y)) = 9(y) + vo, (4)

and
h(u}

Vo

(X)) = h(X) + vo. ()

By applying the function g(y) to both sides of the equality
(3), we conclude that

g(ty, (f(uy, (X)) = g(f(X)). (6)
Due to (4), this leads to
9(f(uy, (X)) +vo = g(f(X)). (7)

Instead of the original variable X, let us consider the new
variable z = h(X) for which X = h™1(2). In terms of this
new variable z, the equality (7) takes the form

g(f (W™ (A, (X)) +vo = g(f(h ™" (h(2))) = g(f(h™'(2)).

(8)
Due to (5), this leads to
g(f (WM (W(X) +v0)) +vo = g(f(h(2)), (9)
ie., to
g(f(h™ (2 +v0))) +v0 = g(f(h™1(2)). (10)
Thus, for the function
F(z) = g(f(h™(2))), (11)
we have
F(z+wvo) +vo = F(2). (12)
For z = 0, we thus get F'(vg) + vo = F(0), i.e.,
F(vg) = const — vy. (13)

By applying the inverse transformation g~*(y) to both sides
of the equality (11) and by taking z = h(z), we get

f(x) = g~ 1 (F(h(2))),
i.e., due to (13):
f(z) = g ' (const — h(x)).

Thus, to find all possible transformation functions f(z) from
the optimal family, it is sufficient to find all possible homo-
morphisms g(y) and h(X).

(14)

4°. Let us describe all the functions g(y) that satisfy the equal-
ity (4). In this equality, the transformation ¢y is fractional
linear, so it has the form

a(vo) +b(vo) - y

toe(y) = T+ c(o) - 3

for some functions a(vp), b(vg), and ¢(vp). Thus, the formula
(4) has the form:

a(vg) + b(vo) - y
g (L+ c(vo) -y

(16)

) = g(y) + vo. (17)

Differentiating both sides of this formula with respect to vy
and taking vg = 0, we conclude that

o (18)

(pP+gytey’)=1
for some values p, ¢, and 7.

We can separate the variables if we divide both sides by the
quadratic expression and multiply both sides by dy, then we
get
dy

dog— — "9
Ity

dx.

Integrating both parts, we conclude that

()f/L
M= pvay+ro®

Let us consider possible expressions for this integral, expres-
sions depending on which coefficients are equal to 0 and which
are different from 0.

(19)

5°. Let us first consider the case when ¢ = r = 0. In this case,
(19) leads to the fact that g(y) is a linear function.

6°. Let us now consider the case when » = 0 but ¢ # 0. In
this case, we have

B dy [1dp+q-y)
gy) = ——=[- —7—=
P+q-y qg p+q-y

where C' is the integration constant.
Here, g(y) = v if and only if

1
= 5~ln(p+q~y)+C,

1
v:§~ln(p+q'y)+C,

soln(p+q-y) =q-v—C, hence p+q-y =exp(q-v—C) =
const - exp(q - v) and thus, the inverse function takes the form
y = const exp(q - v) + const.

7°. When 7 # 0, then, by a linear transformation of y, to some
Y (y), we can reduce the quadratic form p+q-y-+7-y? to the
full-square form, i.e., either to Y2 orto 1+Y? orto 1 — Y2

7.1°. When the reduced quadratic form has the form Y2,
integration leads to
_[dYy 1

= +C.

g(Y) = vz~ Ty

Taking into account that Y is a linear function of y, we get
a general fractional linear function. In this case, the inverse
function is also fractional linear.

7.2°. When the reduced quadratic form has the form 1 + Y2,

integration leads to
/ dy
1+7Y2

g(Y) =
In this case, g(y) is, in effect, an arctangent — modulo linear
transformations before and after — and the inverse is, in effect,
the tangent function.

= arctan(Y").

7.3°. When the reduced quadratic form has the form 1 -Y?2 =
(1-Y)-(14Y), then

2

11 1 N 1
1-Y2 2 \1-Y 1+4Y)’

(y)_/diy_l /diy_,_ 4y N _
B = 12y T3 1-v 1+vY)

(ln(lY)+ln(1+Y))+C—1~ln<1+Y)+C.

2 1-Y

Taking into account that Y is a linear function of y, we get
logarithm of a fractional-linear function. The inverse function
in this case is linearly related to the sigmoid.

The proposition is proven.

[1]

[2]

(11]

[12]

REFERENCES

R. Belohlavek, J. W. Dauben, and G. J. Klir, Fuzzy Logic and Mathe-
matics: A Historical Perspective, Oxford University Press, New York,
2017.

1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press,
Cambridge, Massachusetts, 2016.

V. M. Guillemin and S. Sternberg, “An algebraic model of transitive
differential geometry”, Bulletin of American Mathematical Society,
1964, Vol. 70, No. 1, pp. 16-47.

G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper
Saddle River, New Jersey, 1995.

J. M. Mendel, Uncertain Rule-Based Fuzzy Systems: Introduction and
New Directions, Springer, Cham, Switzerland, 2017.

H. T. Nguyen and V. Kreinovich, Applications of Continuous Mathe-
matics to Computer Science, Kluwer, Dordrecht, 1997.

H. T. Nguyen, C. L. Walker, and E. A. Walker, A First Course in Fuzzy
Logic, Chapman and Hall/CRC, Boca Raton, Florida, 2019.

V. Novik, I. Perfilieva, and J. Mockor, Mathematical Principles of Fuzzy
Logic, Kluwer, Boston, Dordrecht, 1999.

I. M. Singer and S. Sternberg, “Infinite groups of Lie and Cartan, Part
17, Journal d’Analyse Mathematique, 1965, Vol. XV, pp. 1-113.

E. van Krieken, E. Acar, and F. van Harmelen, “Analyzing differentiable
fuzzy logic operators”, Artificial Intelligence, 2022, Vol. 302, Paper
103602.

N. Wiener, Cybernetics, or Control and Communication in the Animal
and the Machine, 3rd edition, MIT Press, Cambridge, Massachusetts,
1962.

L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8,
pp. 338-353.

