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Abstract—How to find relation between objects in a video?
If two objects are closely related – e.g., a computer and it
mouse – then they almost always appear together, and thus, their
numbers of occurrences are close. However, simply computing the
differences between numbers of occurrences is not a good idea:
objects with 100 and 110 occurrences are most probably related,
but objects with 1 and 5 occurrences probably not, although 5−1
is smaller than 110− 100. A natural idea is, instead, to compute
the difference between re-scaled numbers of occurrences, for an
appropriate nonlinear re-scaling. In this paper, we show that
fuzzy ideas lead to the selection of logarithmic re-scaling, which
indeed works very well in video analysis – and which also explains
Fechner Law in psychology, that our perception of difference
between two stimuli is determined by the difference between the
logarithms of their intensities.

Index Terms—fuzzy ideas, relation between objects in a video,
Fechner Law

I. FORMULATION OF THE PROBLEM

Practical problem with which we started this research. In
a video, we usually have several objects that appear from time
to time. One of the things that we need to know in order to
understand the video is:

• which pairs of objects are related – and if they are related,
to what extent, and

• which pairs of objects are not related to all.

A seemingly natural idea. If the objects are closely related –
e.g., a computer and its mouse – then in most cases, they will
appear or not appear at the same time. Yes, there will be some
cases when we see the computer and not the mouse – and vice
versa, the mouse but not the computer – but in general, they
would appear approximately the same number of times. On
the other hand, if two objects are not related, then it is highly
improbable that these two unrelated objects will appear the
exact number of times.

It therefore seems reasonable to take the difference between
the numbers of appearances of the two objects as a measure
of the degree to which these objects are not related.
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A direct implementation of this idea and why it does not
work. In a nutshell, the above idea means that the smaller the
difference between the two numbers of occurrence, the more
probable it is that the two objects are related. Let us explain
why there is a problem with the direct implementation of the
above idea. For this purpose, let us consider the following two
situations.

In the first situation, we have two related objects that most
frequently appear together – e.g., in 90% of the cases. In this
situation, the numbers of occurrences can be, e.g., 90 and 100.
The difference between these two numbers is |100−90| = 10,
and the objects are related.

In the second situation, we have two unrelated objects that
occur rarely in the video. For example, one of the two objects
appeared 1 time, and another one appeared 5 times. In this
case, the difference between the numbers of occurrences is
|5 − 1| = 4, which is much smaller than 10 – but we can
hardly make a conclusion that these two objects are related.

In this example, we have small difference for unrelated
objects and a larger difference for related ones – contrary to
the above idea.

Similar examples from other application areas. A similar
problem appears in other application areas. For example, if we
look for economically similar folks, at first glance, a seemingly
reasonable idea is to use the difference between the yearly
incomes as a measure of their dissimilarity. However:

• the economic difference between a poor student who gets
$20K per year and a professor who gets $70K per year
is huge, while

• the two billionaires whose annual incomes are $2 billion
and $4 billion are economically similar.

On the other, the difference |70 − 20| = 50K in the first
situation is much smaller than the 2-billion difference in the
second situation.

Another example: we can easily see the difference between
a dim 20W light bulb and a reasonable 40W bulb, but we
will probably not see that much different between 100W and
130W bulbs, even though for the second pair, the difference
is larger.

How can we modify this idea to make it work? A
natural idea is to re-scale the numbers of occurrences before



computing the difference, i.e., compute the difference:
• not between the numbers of occurrences |a− b|,
• but between the appropriate re-scaled numbers, i.e., the

difference |f(a)−f(b)| between the values f(a) and f(b)
for an appropriate re-scaling function f(a) – a function
from positive numbers to positive numbers.

Which re-scaling should we choose? To utilize this idea, we
need to select an appropriate function f(a).

What we do in this paper. The problem of selecting a re-
scaling is not mathematically well-defined, it is formulated by
using imprecise terms from natural language like “appropri-
ate”. So, to solve this problem, it makes sense to use ideas
from fuzzy techniques, techniques that have been designed
by Lotfi Zadeh specifically for translating imprecise (“fuzzy”)
knowledge into precise rules; see, e.g., [1], [7], [9]–[11], [14].

In this paper, we show that these ideas indeed lead to a
reasonable selection of the re-scaling function. The resulting
selection indeed helps to detect relation between objects in
video [2]–[5] and, as a side effect, it explains an empirical
Fechner law about human perception; see, e.g., [12].

II. GENERAL ANALYSIS OF THE PROBLEM

We are interested in situations when the difference is rel-
atively small. When the absolute value |∆a| of the difference
∆a

def
= b − a between the numbers of occurrences is huge,

clearly the corresponding objects are not related.
The difficult-to-decide cases is when this difference is

relatively small. So, in this paper, we will concentrate on these
cases.

Let us use linearization. When the difference is small, what
can we say about the difference

f(b)− f(a) = f(a+∆a)− f(a)

between the re-scaled values? In this case, we can use the idea
actively used in physics (see, e.g., [6], [13]):

• expand this expression in Taylor series in terms of the
small difference and

• only keep the first non-zero term in this expansion.
For our expression, this idea leads to

|f(a+∆a)−f(a)| ≈ |(f(a)+f ′(a)·∆a)−f(a)| = F (a)·|∆a|,

where we denoted F (a)
def
= f ′(a).

What are reasonable properties of the function F (a).
• The larger the value of a, the less important is the

difference – e.g., for billionaires, there is practically no
difference.

• On the other hand, when a is small, even a small
difference is very important: for a little kid who does not
have any money of his own, a dollar is a huge amount,
while for a usual adult, adding $1 would not make a big
change in their happiness.

Since fuzzy technique usually deals with rules, let us formulate
the above argument in terms of rules. The first bullet point can
be described by the following rule:

When the value a is large, the value F (a) is small.

Similarly, the second bullet point can be described by the
following rule:

When the value a is small, the value F (a) is large.

These two rules are actually similar, and what can we con-
clude based on this similarity. At first glance, the above two
rules are rather different. However, a simple re-formulation
makes them similar. Indeed, the intuition behind the second
rule can also described in the following form:

When the value F (a) is large, the value a is small.

Now, this is very similar to the first rule, the only difference
is that:

• the first rule described the transformation from a to F (a),
while

• the reformulated second rule describes the transition from
F (a) to a.

We want to translate these informal rules to a precise expres-
sion. Since these two transition are described by the exact same
rule, it makes sense to conclude that these two transitions are
described by the same function.

In the first rule, we apply the function F (a) to the value a
and get F (a). Similarly, in the reformulated second rule, we
should apply the same function F to the value F (a) and get
a. In other words, we should get

F (F (a)) = a

for all a.

Terminological comment. Functions that satisfy the above
property are known as involutions.

Remaining question. In these terms, we have the following
question: which involution should we use?

We will show the two ways to answer this question. In
the following two sections, we will use two different ideas to
answer this question – and we will see that both ideas leads
to the exact same conclusion.

III. FIRST IDEA

Main idea: simplicity. Our first idea is to utilize one of
Zadeh’s principles – the principle of simplicity: that when we
have several options, we should always select the simplest one.

Comment. Simplicity is not just a philosophical idea: it can
be proven that for an appropriate formalization of simplicity,
this idea leads to asymptotically correct determination of the
dependence from data; see, e.g., [8].

How can we define simplicity. Data processing is usually
performed by computers. Intuitively:



• simple algorithms are fast to compute, while
• complex algorithms require longer computation time.
How can we gauge the computation time? In a computer, the

only hardware supported operations are arithmetic operations:
addition, substraction, multiplication, and division. Whatever
the computer computes, it performs a sequence of arithmetic
operations. For example, when we ask the computer to com-
pute ex, what is actually computes is the sum of the first few
terms in the corresponding Taylor series:

ex ≈ 1 + x+
x2

2!
+

x3

3!
+ . . .+

xn

n!
.

It is therefore reasonable to gauge the computation time by
counting the number of additions, subtractions, multiplica-
tions, and divisions in the corresponding computation – and
multiplying these numbers by the time needed to perform the
corresponding arithmetic operation.

We know the relation between these times:
• addition and subtraction are the fastest operations,
• multiplication is slower – since it implies several addi-

tions, and
• division is the slowest – since it involves several multi-

plications.

So what is the simplest involution? Can we form the function
F (a) by using only faster arithmetic operations, i.e., addition,
subtraction, and multiplication? Not really, since by using
these operations, all we get is a polynomial of a, and all
polynomials tend to infinity when a increases – while we
wanted a function for which for large a, the value F (a) is
small – in particular, for which F (a) should not tend to infinity
as a increases.

So, to get the desired function, we need to use at least one
division. The simplest case would be if we have exactly one
division and no other arithmetic operations. We start with the
variable a and constants c, and we need to involve a in our
computations. So, we have two choices:

F (a) =
a

c
and F (a) =

c

a
.

• The first choice does not work, since it also leads to
F (a) → ∞ when a increases.

• For the second choice, the condition that F (F (a)) = a
means

c

c/a
= a

and is, thus, automatically satisfied.
So, we arrive at the following conclusion.

What the first idea leads to. Our of all possible involutions
F (a) for which large a lead to small F (a), the simplest are
the functions of the type F (a) = c/a for some constant c.

IV. SECOND IDEA

Idea. Instead of looking for the simplest involution, let us
look for all possible involutions that can be exactly computed,
i.e., that can be computed by a finite sequence of arithmetic
operations.

What does this idea mean in precise terms. One can easily
check that if we start with the variable a and apply a finite
number of arithmetic operations, then what we get are all
rational functions, i.e., all ratios of two polynomials

R(a) =
c0 + c1 · a+ . . .+ cn · an

c′0 + c′1 · a+ . . .+ c′m · am
.

Indeed, each such ratio can be computed if:
• we use addition and multiplication to compute the values

of the numerator and the denominator, and
• then we apply one division to compute the ratio.

Vice versa, one can easily show that:
• the variable and the constants are rational function, and
• the sum, difference, product, and ratio of two rational

functions are also rational function.
Thus, by induction, any sequence of arithmetic operations
results in a rational function.

So, the second idea simply means that we are looking for
rational functions that are involutions. Such functions can be
described by the following proposition:

Proposition. The only rational functions F (a) from positive
numbers to positive numbers which are involutions and for
which F (a) does not tends to infinity as a increases are the
function F (a) = c/a for some c > 0.

Comments.
• For readers’ convenience, the proof of this result is placed

in a special (last) section of this paper.
• So, we arrive at the same conclusion as when we used

the first idea:

What the second idea leads to. The only exactly-computable
(rational) convolutions F (a) for which large a lead to small
F (a) are the functions F (a) = c/a for some constant c.

V. WHAT THIS CHOICE OF THE INVOLUTION LEADS TO

What is the resulting transformation. Once we have the
fuzzy-motivated condition that the function F (a) is an involu-
tion, both our ideas lead to the same result: that F (a) = c/a
for some constant c.

We may recall that F (a) is the derivative of the desired
transformation function f(a): F (a) = f ′(a). Thus, we con-
clude that f(a) = c · ln(a) + C for some constant C.

Of course, for computing the differences |f(a)− f(b)|, the
constant C is irrelevant: it disappears when we compute the
difference f(a) − f(b). Thus, without losing generality, we
can state that the resulting transformation function has the
form f(a) = c · ln(a) for some constant c.

This explains the Fechner Law. Fechner Law about human
perception (see, e.g., [12]) states exactly this: that the per-
ceived difference between two stimuli a and b (be they audio,
visual, or others) is determined by the difference | ln(a)−ln(b)|
between the logarithms of their intensities. Thus, our fuzzy-
motivated ideas explain the Fechner Law.



This helps detect relation between objects in a video. The
use of logarithms also helps to solve the problem that we
started with: detecting relation between objects in a video;
see [2]–[5].

VI. PROOF OF THE PROPOSITION

Let F (a) be a rational function which is an involution, i.e.,
for which F (F (a)) = a for all positive values a, and let us
assume that F (a) does not tend to infinity as a increases. Let
us prove that we then have F (a) = c/a for some constant c.

1◦. Let us first deal with the function F (a) as defined for all
positive real numbers.

1.1◦. Let us first prove that the function F (a) is one-to-one,
i.e., that for different positive numbers a ̸= b, the values F (a)
and F (b) should be different.

Indeed, if these values were equal, i.e., if we had F (a) =
F (b), then we will have F (F (a)) = F (F (b)). However,
since F (a) is an involution, that would imply a = b. But
we assumed that a ̸= b. This contradiction shows that we
cannot have F (a) = F (b). Thus, a ̸= b indeed implies that
F (a) ̸= F (b).

1.2◦. Let us now prove that the function F (a) is an onto
function, i.e., that every positive number a is equal to F (x)
for some positive number x.

Indeed, this is true for x = F (a).

1.3◦. Parts 1.1 and 1.2 of this proof show that F (a) is one-
to-one onto function. Such functions are known as bijections.

1.4◦. Every rational function is continuous everywhere it is
defined, so F (a) is a continuous function.

1.5◦. The function F (a) is a continuous bijection from the
set of all positive numbers to itself. It is known that all such
functions are either strictly increasing or strictly decreasing.

Let us prove this by contradiction. Since the function F (a)
is one-to-one, when a < b, we cannot have F (a) = F (b), we
must have either F (a) < F (b) or F (a) > F (b).

• Strictly increasing means that for a < b we always have

F (a) < F (b).

• Strictly decreasing means that for a < b we always have

F (a) > F (b).

We want to prove that if we have F (a) > F (b) for some
a < b, then we cannot have F (a′) > F (b′) for some a′ < b′.
Indeed, for every α ∈ (0, 1), we can conclude that α·a < α·a′
and (1 − a) · b < (1 − α) · b′ and thus, α · a + (1 − α) · b <
α · b + (1 − α) · b′. For α = 0 and α = 1, this inequality is
also true – it corresponds to a < b and a′ < b′.

Let us now consider the function that maps α ∈ [0, 1] into
the difference

F (α · a+ (1− α) · a′)− F (α · b+ (1− α) · b′).

This function is a composition of continuous functions and is,
therefore, continuous itself.

• When α = 0, this difference is equal to F (a′) − F (b′)
and is, therefore, positive.

• When α = 1, this difference is equal to F (a)−F (b) and
is, therefore, negative.

Thus, by the Intermediate Value Theorem for continuous
functions, there exists an α ∈ (0, 1) for which this difference
is equal to 0, i.e., for which α·a+(1−α)·b < α·b+(1−α)·b′
but

F (α · a+ (1− α) · a′) = F (α · b+ (1− α) · b′).

This contradicts to the fact that the function F (a) is one-to-
one.

Thus, the function F (a) is indeed either strictly increasing
or strictly decreasing.

1.6◦. We assumed that the function F (a) is not strictly increas-
ing, thus it must be strictly decreasing. Since this function is
onto, values close to 0 must map to values close to infinity
and vice versa, i.e., we must have F (a) → 0 as a → ∞.

2◦. Let us now deal with the natural extension of a function
F (a) to all complex numbers.

2.1◦. Every rational function is analytical, so our involution is
analytical too. In particular, we can naturally extend it to all
complex values z. Of course, for some z, the denominator can
be 0, so for these z, we will have F (z) = ∞. The composition
of rational functions is also rationl, so the function F (F (z))
is also analytical.

2.2◦. It is known that if two analytical functions are equal
on an infinite set that contains a limit point, then these two
functions are equal for all z.

In our case, the functions F (F (z)) and z are equal for all
positive real numbers z. The set of all positive numbers clearly
contains many limit points, so we conclude that F (F (z)) = z
for all complex values z.

2.3◦. In complex domain, each polynomial of each degree
n – including the numerator and the denomination of the
expression F (z) – have exactly n roots z1, . . . , zn – if we
count roots with multiplicity the corresponding number of
times. Thus, each polynomial can be represented as a product

c · (z − z1) · . . . · (z − zn).

So, the rational function F (z) can be represented as the
ratio of two such products:

F (z) =
c · (z − z1) · . . . · (z − zn)

c′ · (z − z′1) · . . . · (z − z′m)
.

We can simplify this expression if we divide both numerator
and denominator by c′. Then the constant c′ in the denominator
disappears.

Also, if both the numerator and the denominator contain
the same difference z−zi, then we can divide both numerator



and denominator by this difference. Thus, we can conclude
that the function F (z) has the following form:

F (z) =
c · (z − z1) · . . . · (z − zn)

(z − z′1) · . . . · (z − z′m)
,

where all the values zi are different from all the values z′j .

2.4◦. Let us show that all the roots in the numerator are equal
to each other.

We will prove this by contradiction. Suppose that we have
zi ̸= zj for some i ̸= j. Then we would have F (zi) =
F (zj) = 0. Thus, F (F (zi)) = F (F (zj)).

On the other hand, since F (z) is an involution, we should
have F (F (zi)) = zi ̸= F (F (zj)) = zj – which contradicts to
our conclusion that F (F (zi)) = F (F (zj)). This contradiction
shows that the roots in the numerator cannot be different.

2.5◦. Similarly, we can prove that all the roots in the denom-
inator are equal to each other.

We can also prove it by contradiction. Indeed, suppose that
we have z′i ̸= z′j for some i ̸= j. Then we would have F (z′i) =
F (z′j) = ∞. Thus, F (F (z′i)) = F (F (z′j)).

On the other hand, since F (z) is an involution, we should
have F (F (z′i)) = z′i ̸= F (F (zj)) = z′j . The contradiction
shows that these roots cannot be different.

2.6◦. Due to Parts 2.4 and 2.5 of this proof, the function F (z)
has the form

F (z) =
c · (z − z1)

n

(z − z′1)
m

,

for some n ≥ 0 and m ≥ 0.

2.7◦. Since we want F (a) → 0 as a → ∞, we must have
m > n. Since n ≥ 0, this means that m ≥ 1, so there is some
value z′1.

For z = z′1, we have F (z′1) = ∞. We know that F (∞) = 0,
thus F (F (z′1)) = 0. Since the function F (z) is an involution,
we have F (F (z′1)) = z′1, thus z′1 = 0. So, the function F (z)
has the form

F (z) =
c · (z − z1)

n

zm
,

for some m > 0. In this case, F (0) = ∞.

2.8◦. What happens if n > 0? In this case, we will have

F (z1) = 0.

We know, however, that F (0) = ∞, so

F (F (z1)) = F (0) = ∞.

This contradicts to the involution equality F (F (z1)) = z1.
This contradiction shows that we cannot have n > 0, so n = 0.
Thus, the function F (z) has the form

F (z) =
c

zm
.

2.9◦. For the above expression, the involution requirement
takes the form

F (F (z)) =
c

(c/zm)m
=

c

cm/zm2 = c1−m · zm
2

= z.

This equality must be satisfied for all z, so we must have
m2 = 1. Thus – since m is a positive number – we must have
m = 1. In this case, the desired involution equality is always
satisfied,

So, we indeed conclude that F (z) = c/z for some c > 0.
The proposition is proven.
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