How Difficult Is It to Comprehend a Program
That Has Significant Repetitions: Fuzzy-Related
Explanations of Empirical Results

Christian Servin, Olga Kosheleva, and Vladik Kreinovich

Abstract In teaching computing and in gauging the programmers’ productivity, it
is important to property estimate how much time it will take to comprehend a pro-
gram. There are techniques for estimating this time, but these techniques do not take
into account that some program segments are similar, and this similarity decreases
the time needed to comprehend the second segment. Recently, experiments were
performed to describe this decrease. These experiments found an empirical formula
for the corresponding decrease. In this paper, we use fuzzy-related ideas to provide
commonsense-based theoretical explanation for this empirical formula.

1 Formulation of the Problem

Why should we measure comprehension complexity. Some programs are easier
to understand, some are more complex and thus, take more time to understand. In
teaching computing, it is desirable to be able to estimate how much time it will take
for students to understand a given program.

Similar estimates are useful for managing teams of professional programmers.
When they write new code, we can gauge their productivity, e.g., by the number of
lines of code. However, it is well known that in many cases, programmers do not
write code “from scratch”: in the process of writing code programmers often use

Christian Servin
Information Technology Systems Department, El Paso Community College (EPCC)
919 Hunter Dr., El Paso, TX 79915-1908, USA, cservinl @epcc.edu

Olga Kosheleva
Department of Teacher Education, University of Texas at El Paso, 500 W. University
El Paso, Texas 79968, USA, e-mail: olgak @utep.edu

Vladik Kreinovich
Department of Computer Science, University of Texas at El Paso, 500 W. University
El Paso, Texas 79968, USA, e-mail: vladik @utep.edu



2 Christian Servin, Olga Kosheleva, and Vladik Kreinovich

available code snippets and modify them so that they can be appropriately incor-
porated into the newly designed code. To be able to do it, the programmer needs
first to understand the available code. To gauge the programmers’ productivity —
and to properly estimate the time needed to complete the corresponding task — it is
desirable to estimate the time needed to comprehend the given code segment.

How comprehension complexity is measured now: MCC. Several measure have
been designed to gauge the comprehension complexity. Judged by the number of
citations, the most widely used measure of comprehension complexity is so-called
McCabe’s cyclomatic complexity — MCC, for short [6]. Crudely speaking, the com-
plexity of a simple no-branching no-loops program is 1, and each if-statement, each
loop adds one to this complexity.

Limitation of MCC. For a program whose parts are very different from each other,
MCC provides a very good measure of comprehension complexity.

However, many programs contain parts which are very similar. This makes per-
fect sense: there are only so many different clever ideas and ingenious tricks, so in
areasonable long program, where lots of these ideas have been applied to make this
program more efficient, inevitably we will have the same idea used several times.

This is similar to the well-known pigeonhole principle often used to prove results
in theory of computation: if N pigeons are all in cages, and the overall number of
cages n is smaller than the number of pigeons, then there must be at least one cage
than contains several pigeons. Similarly, if we have N parts using clever ideas, and
the number 7 of used ideas is smaller than N, there must be at least one idea that is
used in several parts of the code.

And when the same idea is used in different parts of the code, these parts become
similar. The problem is that MCC does not take this similarity into account: whether
we consider a two-part code consisting of completely different parts or a two-part
code with two similar parts, the MCC is the same in both cases — the sum of MCCs
of both parts.

Of course, in reality, similarity between the parts makes the code easier to under-
stand. It is therefore necessary to take this into account.

Experimental data. To analyze how the comprehension complexity decreases with
repetition, researchers measured the time that it takes to understand the part of the
code that for the second, third, etc., times uses the same idea; see [2] for details. They
concluded that, on average, the comprehension complexity C; of the i-th repetition
is related to the complexity C; of the first repetition by a formula C; = ¢'~' - C; for
q~0.6.

Remaining challenge and what we do in this paper. As we have mentioned, the
main reason for the study [2] was to better gauge comprehension complexity. This
can help both in teaching computing and in gauging the productivity of program-
mers. From this viewpoint, while empirical formulas are helpful, it is usually more
reliable if a formula has some convincing theoretical explanation. This way, we can
more sure that this formula — derived based on a few cases — can be safely applicable
to other cases as well.



How Difficult Is It to Comprehend a Program 3

This is what we do in this paper: we provide a fuzzy-related explanation for the
above empirical formula.

2 Analysis of the Problem and the Resulting Explanation

Our approach. In our analysis of the problem, we will use natural commonsense
ideas about this situation. Such ideas are usually described by using imprecise
(“fuzzy”) words from natural language. So, if we want to come up with numeri-
cal dependencies, we need to translate these commonsense descriptions into precise
terms. This need was first well understood in the 1960s by Lotfi Zadeh, who called
such translation techniques fuzzy, and who developed successful techniques for con-
trol (and similar situations); see, e.g., [1, 4, 7, 8, 9, 11]. In this paper, we will use
somewhat different but related techniques, also inspired by Zadeh’s original ideas.

Let us start our analysis. In general, if we have a code segment with comprehen-
sion complexity C, then, if we encounter a similar code segment further on, the
comprehension complexity of the consequent sequent should be smaller. Of course,
the comprehension complexity of this consequent code segment depends on the
complexity of the original code segment:

« if the original code segment was difficult to understand, the consequent segment
will also be not very simple, while

« if the original code segment was rather simple, the consequent segment will be
even simpler.

In other words, the comprehesion complexity of the consequent code segment de-
pends on the comprehension complexity C of the original code. Let us denote com-
prehension complexity of the consequent code segment by f(C).

Based on common sense, what can we say about the function f(C)? First, we
know that f(C) < C. Also, we are talking about reasonably small code segments,
segments that are, eventually, easy to understand by an average programmer. This is
especially so in the educational environment, when we start with simple code. So,
the values C that we are interested in are relatively small — we are not talking about
complex codes with hidden logic that programmers from competing companies try
to reverse engineer.

Situations when we are interested in the dependence y = f(x) between two phys-
ical quantities x and y and we know that x is small are common in physics; see,
e.g., [3, 10]. In such cases, a usual technique is to take into account that for small
numbers x, their squares, cubes, etc., are much smaller than the original number. For
example, for x = 0.1, its square is x2=0.01 < x=0.1, and its cube is even smaller.
Thus, a reasonable idea is to expand the unknown dependence y = f(x) in Taylor
seriesy=ag+ai-x+ap x24...and ignore terms which are quadratic or of higher
order in terms of x — since these terms are much smaller than x. As a result, we get
a linear dependence y = ag +aj - x.



4 Christian Servin, Olga Kosheleva, and Vladik Kreinovich

It is important to notice that by “small”, physicists mean small in the physical
sense — much smaller than possible large values, it is not always correlated with the
numerical value being small. For example, in terms of changing a human state 1
second is very small, but if we describe the same amount in nanoseconds, we get
one billion — mathematically it is a big number, but from the physical viewpoint, the
corresponding period is still small.

Since the value C is small, it makes sense to apply a similar idea to the depen-
dence f(C), and thus, conclude that f(C) = ap+a; - C for some a¢ and a;.

When the code segment is very simple, i.e., when C = 0, a similar consequent
segment should also be simple. So, we have f(0) = 0. Thus, in the linear formula,
we have ap =0 and f(C) =a; -C.

What we can now explain and what still needs to be explained. So, we have
Cy=a;-C;, C3 =a;-Cy, ..., and, in general, C;y1 = a; - C;. By induction, we
can conclude that for all i, we have C; = a’fl -C1. This is exactly the observed
dependence, with g = a;.

So, we explained the general shape of the formula. What remains to be explained
if why we have g ~ 0.6. To explain this value, let us continue our analysis.

Let us continue our analysis. An empirical fact is that the time needed to compre-
hend the next segment is significantly smaller than the time needed to comprehend
the original segment. This decrease is caused by the fact that the consequent segment
is similar to the previous one.

A consequent similar fragment is similar to the previous one, but these two seg-
ments are not almost identical: if two code segments were almost identical, we could
probably combine them. So, it is reasonable to conclude that there is significantly
more difference between the two segments than there is similarity.

How can we gauge this? The decrease in time is causes by similarity. If we start
with time C needed to comprehend the original segment, then:

o the similarity causes the decrease ¢ —C-g = (1 —gq) - C from C to ¢ -C, while
 the non-similarity leads to the need to still spend the time g - C on comprehending
the new segment.

Thus, the fact that there is more difference than similarity means that the value
(1 —gq) - C is significantly smaller than ¢ -C.

Here we have another natural-language term — “significantly smaller”. How can
we describe it? Similarly to what we did earlier, we can try to assign, to each nu-
merical value x, a value y that is typical among all the values which are significantly
smaller than x. In other words, we are looking for a function y = g(x) that would
assign such typical value y to each x. Similarly to our first idea, we can conclude
that the dependence y = g(x) should be linear, i.e., should have the form y = a - x for
some value a.

To find this value a, we can take into account that now, we have two cases of a
quantity being significantly smaller than the other:

* first, the time ¢ - C needed to comprehend the consequent segment is significantly
smaller than the time C needs to comprehend the original segment, and



How Difficult Is It to Comprehend a Program 5

* second, the time (1 —g) - C corresponding to similarity between the two segments
is significantly smaller than the time g - C corresponding to the difference between
the two segments.

If we apply the above formal description y = a - x of the statement “x is significantly
smaller than y”, then:

e from the first case, we conclude that ¢-C = a-C, i.e., that a = ¢, and
+ from the second case, we conclude that (1 —q)-C=a-q-C, thus 1 —q = ¢*.

This quadratic equation is easy to solve, so we conclude that

V5—1
2

q= =0.618... = 0.6.
Thus, we have explain the numerical value of the parameter g as well. So, the em-
pirical formula (1) is fully explained.

Comment. The above value is known as the golden ratio or golden proportion. It is
worth mentioning that there are other fuzzy-related arguments that lead to this ratio;
see, e.g., [S].

Acknowledgments

This work was supported in part by the National Science Foundation grants 1623190
(A Model of Change for Preparing a New Generation for Professional Practice in
Computer Science), HRD-1834620 and HRD-2034030 (CAHSI Includes), EAR-
2225395 (Center for Collective Impact in Earthquake Science C-CIES), and by the
AT&T Fellowship in Information Technology.

It was also supported by a grant from the Hungarian National Research, Devel-
opment and Innovation Office (NRDI).

References

1. R. Belohlavek, J. W. Dauben, and G. J. Klir, Fuzzy Logic and Mathematics: A Historical
Perspective, Oxford University Press, New York, 2017.

2. D. R. Feitelson, “From code complexity metrics to program comprehension”, Communica-
tions of the ACM, 2023, Vol. 66, No. 5, pp. 52-61.

3. R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics, Addison Wesley,
Boston, Massachusetts, 2005.

4. G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper Saddle River, New
Jersey, 1995.

5. M. Koshelev, “Fuzzy logic explains the Golden Proportion,” International Journal of Intelli-
gent Systems, 1997, Vol. 12, pp. 415-417.

6. T. McCabe, “A complexity measure”, IEEE Transactions on Software Engineering, 1976,
Vol. 2, No. 4, pp. 308-320.



6 Christian Servin, Olga Kosheleva, and Vladik Kreinovich

7. J. M. Mendel, Uncertain Rule-Based Fuzzy Systems: Introduction and New Directions,
Springer, Cham, Switzerland, 2017.

8. H. T. Nguyen, C. L. Walker, and E. A. Walker, A First Course in Fuzzy Logic, Chapman and
Hall/CRC, Boca Raton, Florida, 2019.

9. V. Novdk, 1. Perfilieva, and J. Mockot, Mathematical Principles of Fuzzy Logic, Kluwer,
Boston, Dordrecht, 1999.

10. K. S. Thorne and R. D. Blandford, Modern Classical Physics: Optics, Fluids, Plasmas, Elas-
ticity, Relativity, and Statistical Physics, Princeton University Press, Princeton, New Jersey,
2021.

11. L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8, pp. 338-353.



