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Abstract Studies of how people actually make decisions have led to an empirical
formula that predicts the probability of different decisions based on the utilities of
different alternatives. This formula is known as McFadden’s formula, after a Nobel
prize winning economist who discovered it. A similar formula – known as softmax –
describes the probability that the classification predicted by a deep neural network is
correct, based on the neural network’s degrees of confidence in the object belonging
to each class. In practice, we usually do not know the exact values of the utilities –
or of the degrees of confidence. At best, we know the intervals of possible values
of these quantities. For different values from these intervals, we get, in general,
different probabilities. It is desirable to find the range of all possible values of these
probabilities. In this paper, we provide a feasible algorithm for computing these
ranges.

1 Formulation of the Problem

What is McFadden’s discrete choice: a brief reminder. According to decision
theory (see, e.g., [2, 3, 7, 11, 17, 18, 23]) preferences of a rational decision maker are
described by a special function – called utility u – so that the decision makes always
selects the alternative i with the largest possible value of utility ui. In particular, this
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means that decisions of a rational decision maker should be deterministic – in the
sense that if we give the decision maker the same choice some time in the future,
he/she will make the exact same decision.

In practice, however, people’s decisions are not deterministic: in many cases, we
select the alternative with the largest utility, but sometimes, we select an alternative
with smaller utility. In general, alternatives with higher utility are selected more
frequently, while alternatives with lower utility are selected less frequently. A study
of this phenomena led Daniel L. McFadden to the following empirical formula that
uses the utilities u1, . . . , un of different alternatives to predict the probability pi that
this alternative will be selected:

pi =
exp(k ·ui)

n
∑
j=1

exp(k ·u j)
, (1)

for some constant k > 0; see, e.g., [13, 14, 24]. For this discovery, Professor Mc-
Fadden was awarded the Nobel Prize in Economics.

What is softwax: a brief reminder. One of the main applications of deep learning
(see, e.g., [4]) is the classification problem, when:

• we are given several classes of objects, and
• we need to decide to which of the classes the given object belongs.

For example, in autonomous driving systems, we need to be able to tell whether an
object in front is a person, a bicycle, or a car. In the vast majority of cases, a trained
neural network provides the correct answer, but sometimes it errs. It is therefore
desirable to make sure that the system not only provide an answer, but that it should
also provide us with the probability that this answer is correct. This way, if this
probability is low, we can perform additional measurements and observations.

In a nutshell, the neural networks classify the objects as follows: for each class
i of objects, a sub-network is trained to recognize objects of this class. For each
object, each of these sub-networks produces a degree ui to which, according to this
network, the given object belongs to the i-th class. If we want a single answer, then,
of course, we select the class i for which the corresponding degree is the largest.

In addition to this selection, we also want to estimate the probabilities. In other
words, based on the n degrees u1, . . . ,un, we need to estimates the probabilities
p1, . . . , pn that the given object belongs to the corresponding class. Interestingly, an
empirically reasonable way to estimate these probabilities is to use the following
formula – which is very similar to the formula (1):

pi =
exp(k ·ui)

n
∑
j=1

exp(k ·u j)
. (2)

This formula is known as softmax – because, instead of the “hard” maximum, when
we simply select the class i with the largest degree ui, we have “soft” maximum,
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when we select the most probable class with higher probability, but we also, with
some non-zero probability, select other classes.

Need to consider interval uncertainty. The formula (1) assumes that we know the
exact utility values ui. In practice, we only get these values with some uncertainty.
For example, we may only know the range [ui,ui] of possible values of ui. For dif-
ferent values ui from the corresponding intervals, we get, in general, different values
of the probabilities pi. A natural question is: what is the resulting range [pi, pi] of
possible values of each probability pi?

A similar problem emerges in the softmax situation. The values ui are computed
based on the results of measuring the corresponding object. Measurement are never
absolutely accurate: the result x̃ of measuring a quantity x is, in general, somewhat
different from the actual (unknown) value of the corresponding quantity. In many
practical situations, the only information that we have about the measurement error
∆x def

= x̃− x is the upper bound ∆ on its absolute value |∆x| ≤ ∆ ; see, e.g., [22]. In
this case, after the measurement, the only information that we get about the actual
value x is that this value belongs to the interval [x̃−∆ , x̃+∆ ]. For different values
x from the corresponding intervals, we get, in general, different values ui. As a
result, for each i, we get the interval [ui,ui] of possible values ui corresponding to
different values of x – computing this interval is an important particular case of
interval computations; see, e.g., [5, 9, 12, 16].

For different values ui from the corresponding intervals, we get, in general, dif-
ferent values of the probability pi. It is therefore desirable to find the range [pi, pi]
of possible values of each probability pi.

This is useful in practice: for example:

• it is one thing to say that an estimate of the probability that the classification is
correct is 80%, and

• it is a different thing to say that this probability is somewhere 70% and 90%.

Resulting problem. From the computational viewpoint, in both cases, we face the
same problem:

• we know the value k, and we know intervals [ui,ui] of possible values of ui;
• we want to find the range [pi, pi] of possible values of the expression (1).

At first glance, this problem sounds very complicated but, as we show, it is not.
In general, problems of interval computations are NP-hard; see, e.g., [8, 21]. This
means, crudely speaking, that unless P = NP (which most scientists believe not to
be the case), no feasible algorithm can solve all particular cases of this problem.

Interval computation problems are even NP-hard if we want to compute the range
of a quadratic function. The expression (1) has exponential functions and division –
operations much more complex than addition and multiplication needed to compute
a quadratic expression. So, it seems reasonable to expect that computing (1) is also
computationally complicated.
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In this paper, we show, however, that the above problem is quite feasible; more-
over, it can be solved in linear time. We also show that this feasibility holds for
reasonable generalizations of the formula (1) and of interval uncertainty.

What we say “Revisited”. In our title, we use the word Revisited, since we dealt with
softmax and McFadden’s discrete choice under interval uncertainty in our previous
paper [10]. The difference is that:

• in that paper, we dealt with a different problem: how to select most reasonable
single value of each probability pi under interval uncertainty, while

• in this paper, we are interested in finding the whole range of possible probability
values.

2 Our Algorithm

Preliminary analysis of the problem. To simplify our analysis, let us divide both
the numerator and the denominator of the formula (1) by its numerator. As a result,
we get the following expression:

pi =
1

1+ ∑
j ̸=i

exp(k ·u j)

exp(k ·ui)

. (3)

Here:

• Each fraction
exp(k ·u j)

exp(k ·ui)

increases with u j ( j ̸= i) and decreases with ui.
• Thus, the denominator – which is the sum of these terms – also increases with

each u j ( j ̸= i) and decreases with ui.
• Since the function 1/x is decreasing, the probability pi – which is equal to 1 over

denominator – decreases with u j ( j ̸= i) and increases with ui.

So:

• the probability pi is the largest when ui is the largest possible and other values u j
are the smallest possible, i.e., ui = ui and u j = u j for all j ̸= i; and

• the probability pi is the smallest when ui is the smallest possible and other values
u j are the largest possible, i.e., ui = ui and u j = u j for all j ̸= i.

Thus, we arrive at the following formulas:

pi =
exp(k ·ui)

exp(k ·ui)+ ∑
j ̸=i

exp(k ·u j)
; (4)
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pi =
exp(k ·ui)

exp(k ·ui)+ ∑
j ̸=i

exp(k ·u j)
. (5)

What if we follow these formulas directly? According to the formulas (4) and (5),
to compute each of 2n bounds pi and pi, we need a linear number of steps C ·n for
some constant C. Thus, overall, we need 2n ·C ·n = O(n2), i.e., quadratic time.

Can we compute all the probabilities faster? Yes, it we take into account that, e.g.,
for the formula (4), if we add and subtract the term exp(k ·ui) to its denominator –
thus not changing the value of the denominator – we get the form

exp(k ·ui)− exp(k ·ui)+
n

∑
j=1

exp(k ·u j). (6)

Similarly, if we add and subtract the term exp(k ·ui) to the denominator of the for-
mula (5), we get the following expression:

exp(k ·ui)− exp(k ·ui)+
n

∑
j=1

exp(k ·u j). (7)

The n-term sums in the expressions (6) and (7) are the same for all i, so they can be
computed only once. Thus, we arrive at the following linear-time algorithm.

Linear-time algorithm for computing the ranges [pi, pi]. We are given the values
ui and pi. Based on these values:

• first, we compute the values exp(k · ui), exp(k · ui), and the differences mi
def
=

exp(k ·ui)− exp(k ·ui);

• then, we compute the sums s =
n
∑

i=1
exp(k ·ui) and s =

n
∑

i=1
exp(k ·ui);

• after that, we compute the desired values

pi =
exp(k ·ui)

s−mi
; pi =

exp(k ·ui)

s+mi
.

One can easily check that this algorithm requires linear time.

Comment. We cannot compute the desired bounds faster than in linear time since we
need to process all 2n inputs ui and ui, and each elementary operation – arithmetic
operation of an application of an elementary function like exp(x) – can process at
most two values. Thus, to process all 2n inputs, we need at least (2n)/2 = n com-
putational steps. So, from the computational viewpoint, our algorithm is asymptoti-
cally optimal.
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3 Possible Generalizations

What if we only know the value k with interval uncertainty? Since we are taking
into account that many values are known with uncertainty, it is reasonable to also
consider the case when the value of the parameter k is also known with interval un-
certainty, i.e., when we only know the interval [k,k] of possible values k. In this case,
we should looks the range of values pi corresponding to all possible combinations
of values ui and k from the corresponding intervals.

In classification problems, we are mostly interested in the probability pi that the
generated answer – that corresponds to the largest value of ui – is correct. For this
value i, we can reformulate the expression (3) in the following equivalent form:

pi =
1

1+ ∑
j ̸=i

exp(k · (u j −ui))
. (11)

Here, ui ≥ u j for all j, so u j −ui ≤ 0.

• Thus, exp(k ·(u j −ui)) decreases with k, so the sum of these terms also decreases
with k, and so it the denominator of the expression (11).

• So, the fraction (11) increases with k.

Therefore:

• to compute the lower endpoint pi, it is sufficient to consider the smallest possible
value of k, namely k = k, and

• to compute the upper endpoint pi, it is sufficient to consider the largest possible
value of k, namely k = k.

So, we get the following formulas:

pi =
exp(k ·ui)

exp(k ·ui)+ ∑
j ̸=i

exp(k ·u j)
; (12)

pi =
exp(k ·ui)

exp(k ·ui)+ ∑
j ̸=i

exp(k ·u j)
. (13)

Since we are only interested in computing the values pi and pi for one class i, we
can simply follow these formulas are get a linear-time algorithm.

Comment. The possibility to have a linear-time algorithm depends on the fact that
for the class i with the largest value ui, the probability pi monotonically depends on
k – namely, it increases with k. One can similarly show that for the smallest value
ui, we also have a monotonic dependence – namely, pi decreases with k. However,
for intermediate values ui, the dependence on k is not necessarily monotonic, as the
following simple example shows.

Let us take u1 = ln(1) = 0 > u2 = ln(0.6)> u3 = ln(0.1). Then:
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• For k = 0, we get exp(k ·ui) = 1 for all i, so

p2(0) =
1

1+1+1
=

1
3
= 0.33 . . .

• For k = 1, we get exp(k ·u1) = 1, exp(k ·u2) = exp(ln(0.6)) = 0.6, and
exp(k ·u3) = exp(ln(0.1)) = 0.1, so

p2(1) =
0.6

1+0.1+0.6
=

0.6
1.7

= 0.35 . . .

• For k → ∞, we get exp(k ·u1) = 1 while exp(k ·u2) and exp(k ·u3) tend to 0. So
in the limit, we get

p2(∞) =
0

1+0+0
= 0.

So here k = 0 < k = 1 < k = ∞, but for the corresponding values of p2, we do not
get monotonicity: p2(0) = 0.33 . . . < p2(1) = 0.35 . . . > p2(∞) = 0.

Thus, whether we can feasibly compute the range of the other probabilities pi
– under the assumption that k is known with interval uncertainty – is still an open
question.

What if we use generalizations of the formulas (1)-(2)? Formulas (1) and (2) are
empirical, they work well but not always perfectly. To have a better fit with the data,
researchers proposed more general formulas, of the type

pi =
f (ui)

n
∑
j=1

f (u j)
, (9)

for some non-negative increasing function f (u).
All our results can be naturally extended to this more general case: namely, in

this case, we have

pi =
f (ui)

f (ui)+ ∑
j ̸=i

f (u j)
; (10)

pi =
f (ui)

f (ui)+ ∑
j ̸=i

f (u j)
; (11)

and we have the following linear-time algorithm for computing pi and pi:

• first, we compute the values f (ui), f (ui), and the differences mi
def
= f (ui)− f (ui);

• then, we compute the sums s =
n
∑

i=1
f (ui) and s =

n
∑

i=1
f (ui);

• after that, we compute the desired values

pi =
f (ui)

s−mi
; pi =

f (ui)

s+mi
.
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What if we consider fuzzy uncertainty instead of interval uncertainty? In the
previous text, we considered situations when the approximate values x̃ come from
measurements. There is another possibility: that the approximate values come from
an expert estimate. Experts usually describe the accuracy of their estimates not in
terms of precise bounds, but rather by using imprecise (“fuzzy”) words from natural
language, e.g., “the value is approximately 1 with accuracy about 0.1.” To describe
such information in precise terms, Lotfi Zadeh came up with an idea that he called
fuzzy logic; see, e.g., [1, 6, 15, 19, 20, 25]. Specifically, for each imprecise property
like “approximately 1 with accuracy about 0.1,” he suggested to assign, to each
real number x, the degree µ(x) – from the interval [0,1] – the degree to which this
number x satisfies this property, so that:

• 1 means that the expert is absolutely sure that x satisfies this property,
• 0 means that the expert is absolutely sure that x does not satisfy this property, and
• intermediate values mean that the expert is somewhat sure.

The function that assigns the degree µ(x) to each number x is known as the mem-
bership function, or, alternatively, as the fuzzy set.

In this case, instead of intervals [ui,ui], we have fuzzy sets µi(ui).
It is known that in general, application of an algorithm y = F(u1, . . . ,un) to fuzzy

inputs µi(ui) – that should result in a fuzzy set µ(y) – can be reduced to processing
intervals if we use the following alternative representation of fuzzy sets. Namely, for
each fuzzy set µ(x), for each α ∈ (0,1], we can form an α-cut x(α)

def
= {x : µ(x)≥

α}. For α = 0, the α-cut is defined as {x : µ(x)> 0}, where S means the closure of
the set S, i.e., the set S and all its limit points.

Once we know all the α-cuts x(α), we can reconstruct the membership function
as µ(x) = sup{α : x ∈ x(α)}.

Then, it turns out that for each α , the α-cut y(α) of y can be obtained by applying
interval computations to the α-cuts ui(α):

y(α) = {F(u1, . . . ,un) : ui ∈ ui(α) for all i}.

So, all we need to do is select, e.g., levels α = 0,0.1,0.2, . . . ,0.9.1. For each
level, we apply the above algorithm to the α-cuts ui(α), and this get the desired
α-cuts pi(α) for the probabilities pi.
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