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Abstract In many computational situations – in particular, in computations under
interval or fuzzy uncertainty – it is convenient to approximate a function by a poly-
nomial. Usually, a polynomial is represented by coefficients at its monomials. How-
ever, in many cases, it turns out more efficient to represent a general polynomial
by using a different basis – of so-called Bernstein polynomials. In this paper, we
provide a new explanation for the computational efficiency of this basis.

1 Formulation of the Problem

What is a general problem. In many computational situations, it is convenient
to approximate a function by a polynomial. This is, for example, how most spe-
cial functions like sin(x), cos(x), and exp(x) are computed in a computer: what the
computer actually computes is the sum of the first several terms in their Taylor ex-
pansion.

From the computational viewpoint, a natural question is: how can we represent a
general polynomial of a given degree?

How this problem is solved in most cases. The usual way to represent a polyno-
mial f (x) of degree ≤ n is to represent it as linear combination of corresponding
monomials, i.e., as

f (x) = c0 · e0(x)+ c1 · e1(x)+ . . .+ cn · en(x), (1)
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where ci are arbitrary coefficients, and ei(x) = xi for all i.

What if we process probabilities: enter Bernstein polynomials. In principle, in
the linear space formed by all such polynomials, we can select a different basis
ei(x). For example, in situations when we know that x can only take values from
the interval [0,1] – e.g., if x is a probability – it is often convenient to select a
different basis ei(x) = xi · (1− x)n−i. Elements of this basis are known as Bernstein
polynomials.

Empirical fact. For processing probabilities – and other values limited to the inter-
val [0,1] – many other bases were tried, but Bernstein polynomials seem to be the
most computationally efficient; see, e.g., [2, 3, 4, 5, 13, 17]. In particular, in many
practical problems, they are efficient in interval computations [6, 9, 10, 12] and in
fuzzy computations [1, 7, 11, 15, 16, 18], when:

• we are given an algorithm = f (x1, . . . ,xn) and some information about uncer-
tainty of xi – i.e., an interval [xi,xi] or a fuzzy membership function µi(xi), and

• we want to find the resulting uncertainty in y – i.e., an interval of possible values
y = f (x1, . . . ,xn) when each xi is in the corresponding interval, or, correspond-
ingly, the membership function µ(y) corresponding to y.

A natural question: what is it, what is known, and what we do in this paper. A
natural question is: Why is this particular basis more efficient?

A partial answer to this question was provided in [8, 14]. In this paper, we provide
another explanation for this empirical fact.

2 Analysis of the Problem

Why go beyond Taylor polynomials? In many practical situations, the usual
Taylor-type polynomials, i.e.., polynomials represented by the basis ei(x) = xi, work
well. However, when the input x is a probability of some event, these polynomials
have a problem.

Indeed, if the event has probability x, then the opposite effect has probability
1− x. For example, if x is the probability that team A wins a match, then (in the
absence of ties) 1− x is the probability that the opposite team B wins this match.
So, if we present the situation from the viewpoint of team B, it is reasonable to
consider the new input y = 1−x, and – if we select Taylor-type polynomials – basis
consisting of functions ei(x)= (1−x)i. However, this is a completely different basis.
But whether we consider it from the viewpoint of Team A or Team B, this is the
same computational problem, and it does not make sense to assume that somehow
the selection of the optimal basis for this computational problem depends on which
team we are more interested in.

From this viewpoint, we should select the basis which should not change if we
replace x with 1− x.
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Which of such bases should we select? Bernstein polynomials have the above
invariant-relative-to-replacing-x-with-(1− x) property, but we can also have many
different bases with this property. For example, for quadratic polynomials, we can
have a basis consisting of the functions x, 1− x, and x · (1− x). Which basis should
we select?

Since in general, Taylor-like polynomials work well, it make sense to require
that when x is small (i.e., when 1−x is practically equal to 1) the selected functions
should be asymptotically equivalent to the usual basis.

Now, we are ready to formulate our main result.

3 Main Result

Definition 1. By a basis, we mean a basis e0(x), e1(x), . . . , en(x) in the linear space
of all polynomials of degree ≤ n.

Definition 2. We say that a basis is view-invariant if it is invariant with respect to
changing x to 1−x, i.e., when the set of functions forming the basis does not change
if we replace x with 1− x:

{e0(x),e1(x), . . . ,en(x)}= {e0(1− x),e1(1− x), . . . ,en(1− x)}.

Definition 3. We say that the basis is asymptotically Taylor if for small x, each
function ei(x) is asymptotically equal to xi, i.e., that

lim
x→0

ei(x)
xi = 1.

Proposition. The only view-invariant asymptotically Taylor basis is the basis con-
sisting of Bernstein polynomials.

Proof.

1◦. When x → 0, each polynomial a0 +a1 ·x+ . . . is asymptotically equivalent to its
first non-zero term. Thus, the fact that ei(x) is asymptotically equivalent to xi means
that its first non-zero term is xi. So, the function ei(x) has the form

ei(x) = xi +ai+1 · xi+1 + . . .

All these terms have xi as one of the factors, so we can conclude that ei(x) = xi ·Pi(x)
for some polynomial Pi(x) = 1+ai+1 · x+ . . . for which Pi(0) = 1.

2◦. Due to view-invariance, a similar argument applies when we consider depen-
dence on 1− x. So, we can conclude that each element of the basis has the form
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(1− x) j ·Q j(x) for some x for which Q j(1) = 1, and that among n+1 elements of
the basis, we should have elements corresponding to all n+1 values j = 0,1, . . . ,n.

3◦. Let us see what the above two properties imply about the functions ei(x). For this
purpose, let us consider these functions one by one, starting with the last one en(x).

3.1◦. Let is first consider the function en(x). According to Part 1 of this proof, this
function has the form en(x) = xn · Pn(x). The polynomial Pn(x) cannot have any
non-constant terms: otherwise its product with xn would have degree higher than
n – and we consider bases in the space of all polynomials of degree ≤ n. Thus,
Pn(x) = 1 and en(x) = xn. From the viewpoint of dependence on 1−x, this function
tends to 1 as 1 − x → 0 – i.e., as x → 1. Thus, it corresponds to the case when
en(x) = (1− x) j ·Q j(x) with j = 0.

3.2◦. Let us now prove, by induction over k, that all the functions en(x), . . . ,
en−(k−1)(x) have the form en− j(x) = xn− j · (1− x) j.

We have the base case: in Part 3.1 of this proof, we proved this statement for
k = 1. To complete the proof by induction, we need to prove the induction step. Let
us assume that the above statement holds for some value k, and let us prove that it
is also true for k, i.e., let us prove that en−k(x) = xn−k · (1− x)k.

Indeed, according to the same Part 1 of the proof, this function has the form
en−k(x) = xn−k ·Pn−k(x), i.e., in its representation as product of irreducible polyno-
mials, it has n− k factors equal to x. On the other hand, due to Part 2 of this proof,
it should also have (1− x) j as a factor.

Here, we cannot have j < k, since functions ei(x) with such factors (1 − x) j

already exist – they are en− j(x), and since n+1 basic functions correspond to n+1
different value j, we cannot have two functions ei(x) corresponding to the same
value j.

We also cannot have j ≥ k+ 1, since then the function en−k(x) should have, as
factors, xn−k and (1−x)k+1, i.e., have the form xn−k ·(1−x)k+1 ·P(x) and have, thus,
degree at least n+1 – while we only consider polynomials of degree ≤ n. Thus, the
only remaining choice is j = k, in which case en−k(x) = xn−k · (1− x)k ·P(x) for
some polynomial P(x).

The polynomial P(x) cannot have any non-constant terms: otherwise its product
with xn−k · (1− x)k would have degree higher than n – and we consider bases in the
space of all polynomials of degree ≤ n. Thus, P(x) is a constant: P(x) = c for some
number c. According to Part 1 of the proof, the polynomial (1−x)k ·c must be equal
to 1 when x = 0. Thus, c = 1 and en−k(x) = xn−k · (1− x)k.

The proposition is proven.
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