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Abstract In this paper, we show that there is a – somewhat unexpected – com-
mon trend behind several seemingly unrelated historic transitions: from Aristotelian
physics to modern (Newton’s) approach, from crisp sets (such as intervals) to fuzzy
sets, and from traditional neural networks, with close-to-step-function sigmoid ac-
tivation functions to modern successful deep neural networks that use a completely
different ReLU activation function. In all these cases, the main idea of the corre-
sponding transition can be explained, in mathematical terms, as going from the first
order to second order differential equations.

1 Let us start with the oldest of these transitions – in physics

Let us start our paper with the transition that occurred in physics several centuries
ago; see, e.g., [4, 16].

Aristotelian physics: a brief reminder. In ancient times, most researchers believed
that a natural state of an un-disturbed object is when this object is not moving at all.
In order to make the object move, we need to apply some force – and it we stop
applying this force, the object stops moving.
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While now we know that this description is wrong, from the commonsense view-
point, this description makes perfect sense. For example, if we push a cart, it will
start rolling, but once we stop pushing, it will pretty fast come to a stop.

Because of this description, people believed that there is a force constantly push-
ing the planets and the Sun across the sky. For example, many religious people
believed that angels are constantly pushing the Sun and the planets with their wings.

How can we describe this worldview in mathematical terms. In mathematical
terms, this description means that in order to change the location of an object, we
need to apply some force. In other words, any change in the object’s coordinates x
has to be explained by an application of some force. From the mathematical view-
point, a change from the object’s coordinate x(t) at some moment of time t and its
coordinate x(t +∆ t) at the “next” moment of time can be described by the deriva-
tive:

ẋ(t)≈ x(t +∆ t)− x(t)
∆ t

.

In these terms:

• if no force is applied, the object does not move, so the derivative ẋ(t) is equal to
0;

• thus, the only way the derivative becomes different from 0 is when some external
force is applied.

In other words, the derivative ẋ is determined by the external forces, so we have an
equation

ẋ(t) = F,

where F is the corresponding force. In mathematics, such equations – involving the
first derivative of the function – are called differential equations of first order.

Galileo’s discovery and the resulting Newtonian physics. While the Aristotelian
approach explains the behavior of physical objects on the qualitative level, when
researchers started performing experiments, they realized that this approach does
not lead to a good quantitative explanation.

One of the first researchers who experimentally tested effects of different forces
on motion was Galileo. Based on his experiments, Galileo came up with a com-
pletely different approach to motion. Namely, he discovered what he called the Law
of Inertia: that if an object started moving with a constant speed in some direction,
then, in the absence of external forces, it will continue this movement indefinitely –
and if the object stops moving, this means that some forces were applied.

For example, when we stop pushing a cart, it does stop – because the force of
friction is applied. And if we place a cart of a very smooth surface, where friction is
small – e.g., on smooth ice – it will continue rolling for a very long time. Similarly,
if we throw a ball into the air, it will stop – because its motion is affected by the
force of gravity.

Galileo provided quantitative description of some of the phenomena, but the full
description of motion came from Newton. Newton used the Law of Inertia as one
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of the main three laws of motion, but he supplemented it with the other two laws
– and he was able to do it: since he invented calculus, the mathematical technique
appropriate for describing motion.

How can we describe Newton’s worldview in mathematical terms. In mathemat-
ical terms, the above description means that in order to change the velocity of an
object, we need to apply some force. In other words, any change in the object’s ve-
locity v has to be explained by an application of some force. From the mathematical
viewpoint, a change from the object’s velocity v(t) at some moment of time t and its
velocity v(t +∆ t) at the “next” moment of time can be described by the derivative:

v̇(t)≈ v(t +∆ t)− v(t)
∆ t

.

In these terms:

• if no force is applied, the object does not change its velocity, so the derivative
v̇(t) is equal to 0;

• thus, the only way the derivative becomes different from 0 is when some external
force is applied.

In other words, the derivative v̇ is determined by the external forces, so we have an
equation

v̇(t) = F,

where F is the corresponding force. Since the velocity v itself is the derivative of the
coordinates v = ẋ, its derivative v̇ is the second derivative of the coordinate v̇ = ẍ.
Thus, the dynamic equation takes the form ẍ = F . In mathematics, such equations –
involving the second derivative of the function – are called differential equations of
second order.

Why second order: a kind-of explanation. So far, the only argument that we pro-
vided in favor of second-other equations was that they lead to a more accurate de-
scription of the physical world. But why do they provide a more accurate description
of the physical world?

A possible – although probably not very convincing – answer to this question
comes from the fact that physical equations are usually described in terms of an
optimization principle. For example, light passing through several media follows
the path for which the transition time is the smallest. Equations of motion can be
equivalently described as saying that some functional

∫
L(x, ẋ)dt – known as action

– attains its smallest possible value, etc.; see, e.g., [4, 10, 16].
Similarly to the fact that the minimum of a function is attained when its derivative

is equal to 0, it can be shown that the minimum of a functional is attained when its
so-called functional derivative is equal to 0, and this derivative takes the form

δL
δx

=
∂L
∂x

− d
dt

(
∂L
∂ ẋ

)
=

∂L
∂x

− ∂ 2L
∂x∂ ẋ

· ẋ− ∂ 2L
∂ 2ẋ

· ẍ,

which is always a second-order equation.
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In principle, we can consider functionals in which L depends only on x – in this
case, we simply have a static equation, no dynamics. We can also consider the case
when L also depends on the second derivative – in this case, we get a 4-th order
differential equation.

Optimization never leads to the first- (or any odd-) order differential equations,
and the simplest even-order differential equation is the second order one.

2 Let us go beyond physics

Case of ecology. Interestingly, a similar transition, from first- to second-order dif-
ferential equations, leads to more accurate models in ecology; see, e.g., [1, 5].

In ecology, the above optimization-based explanation makes more sense than in
physics:

• in physics, the fact that equations come from optimization principles is largely
an empirical fact with no clear physical meaning, while

• in biology, the need to have an optimal fit with the environment is one of the
main principles: without such fit, the species would not survive.

Other cases when optimality naturally appears. There are other cases when opti-
mality naturally appears: namely, the cases when we design objects or design algo-
rithms. In all such cases, we want to select the design that is the best for our purpose.
Let us consider two such examples.

Two examples: a general description. Let us consider two examples:

• in the first example, we are interested in how our degree of confidence x(t) that a
value t satisfies some property change with t; this property may be “t is small”,
it may be “t is larger than 0”, etc.;

• in the second example, we are interested in the activation function x(t) of a neu-
ron, i.e., in a function that transforms a linear combination t of neuron’s input
signals into the output signal; see, e.g., [3, 6].

From the application viewpoint, these two examples deal with completely differ-
ent situations. However, from the mathematical viewpoint, they are similar: in both
cases, we are interested in a real-valued function x(t) of a real-valued variable t.

Let us analyze, for these two examples, what would descriptions in terms of first-
and second-order differential equations lead to.

What will happen if we use first-order differential equations: mathematical
analysis. In general, as we have mentioned, a first-order differential equation has
the form ẋ = F , for some function F describing force.

In principle, at different moments of time, we can apply different forces. From
this viewpoint, the basic, elementary effect is the application of a force which is
active only at one specific moment of time. All other forces can be represented as
combinations of such instantaneous forces applied at different moments of time.
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In mathematical terms, such an elementary force is described by a delta-function
δ (t − t0) which is equal to 0 for all other moments of time t ̸= t0; see, e.g., [4, 16].
Let us therefore consider the first-order differential equation describing this force,
i.e., the equation ẋ = δ (t − t0). For t ̸= t0, the derivative ẋ of the function x(t) is
equal to 0, so both for t < t0 and for t > t0, the function x(t) does not change. In
other words, it is equal to a constant for t < t0, and it is equal to another constant
when t > t0. It is reasonable to start with x(t) = 0, so for t < t0, we have x(t) = 0.

At the point t0, the value of x(t) jumps to some other value. So, we have the
following step function x(t):

• for t < t0, we have x(t) = 0, and
• for t > t0, we have x(t) = c for some constant c.

-
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Let us analyze what this means for both our examples.

Case of degrees of confidence. In this case, we go from no confidence to the next
level – which is natural to be associated with full confidence. This corresponds to the
usual Boolean 2-valued logic, and this corresponds to sets – or, to be more precise,
to infinite or final intervals; see, e.g., [7, 9, 11, 13].

Comment. Specifically, when we have only one delta-function, we get an infinite
interval, but if we add another (negative) delta-function at the endpoint of the desired
interval, we will get a finite interval as well.

Case of an activation function. For activation functions, a step-function is a good
approximation to the sigmoid function – the activation function that was, until re-
cently, most widely used in artificial neural networks; see, e.g., [3].

What will happen if we use second-order differential equations: mathematical
analysis. Second-order differential equations have the form ẍ = F . As in the first-
order case, the elementary force is a delta-function, so we get the equation ẍ =
δ (t − t0).

As we have mentioned earlier, this equation can be equivalently re-written as
v̇ = δ (t − t0), where we denoted v def

= ẋ. In terms of v, this is the same equation that
we considered when we analyze first-order equations, so we can use the solution
that we derived during that analysis. Namely, we conclude that:
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• for t < t0, we have ẋ(t) = v(t) = 0, and
• for t > t0, we have ẋ(t) = v(t) = c for some constant c.

We know the derivative ẋ(t) of the desired function x(t). So, to reconstruct this
function, we can simply integrate the above expression. If we start with 0 as before,
we get the following result:

• for t < t0, we have x(t) = 0, and
• for t > t0, we have x(t) = c · (t − t0).

-
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Let us analyze what this means for both our examples.

Case of degrees of confidence. In this case, instead of only two possible values – as
in the case of first-order equations – we have degrees of confidence that continuously
change from 0 to larger values. This is one of the main ideas behind fuzzy logic; see,
e.g., [2, 8, 12, 14, 15, 17].

Moreover, what we get is a linear shape of this increase – which is exactly what
we get when we use triangular membership functions – the most widely used shape
of membership functions.

Case of an activation function. For activation functions, what we get is exactly
Rectified Linear Unit (ReLU, for short) – the currently most widely used activation
function; see, e.g., [6].

3 Conclusion

In this paper, we show that a natural optimization-motivated transition from first-
order to second-order differential equations explains transitions in physics, in de-
scribing degrees of confidence, and in describing activation functions in neural net-
works:
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application first-order second-order
area differential equations differential equations

physics Aristotelian Newtonian
degrees of sets, fuzzy sets,
confidence intervals triangular

membership functions
neural networks sigmoid ReLU

activation function activation function
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