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Abstract – Most of our knowledge comes, ultimately, from
measurements and from processing measurement results. In
this, metrology is very valuable: it teaches us how to gauge
the accuracy of the measurement results and of the results
of data processing, and how to calibrate the measuring in-
struments so as to reach the maximum accuracy. However,
traditional metrology mostly concentrates on individual mea-
surements. In practice, often, there are also relations between
the current values of different quantities. For example, there
is usually an known upper bound on the difference between
the values of the same quantity at close moments of time or at
nearby locations. It is known that taking such relation into ac-
count can lead to more accurate estimates for physical quan-
tities. In this paper, we describe a general methodology for
taking these relations into account. We also show how this
methodology can help to detect faulty measuring instruments
– thus increasing the reliability of the measurement results.

Keywords: relations between quantities, measurement accu-
racy, measurement reliability

1. FORMULATION OF THE PROBLEM

One of the main objectives of science and engineering. One
of the main objectives of science and engineering is to predict
the future state of the world – and to make sure that this future
state is as beneficial for us as possible.

The state of the world at any given moment of time can be
characterized by the corresponding values of physical quanti-
ties. Thus, what we need is to predict future values of these
quantities. For example, predicting weather means predicting
the future values of temperature, humidity, wind speed and
direction, etc.

Measurements and resulting data processing are very im-
portant. To make the desired predictions, we need to know
the relation between each future value y of the quantities of
interest and current values x1, . . . , xn of related quantities.
This relation is often described in terms of differential (and
other) equations. By applying an appropriate algorithm to
solve this equation, we get an algorithm y = f(x1, . . . , xn)
for estimating y from xi.

So, to come up with the desired estimate ỹ for y, we
measure the current values of the corresponding quantities
x1 . . . , xn and use the measurement results x̃1, . . . , x̃n to
compute the estimate ỹ = f(x̃1, . . . , x̃n) for each desired fu-
ture value y

Traditional metrology is very important. In general, the
more accurately we measure, the more accurate our predic-
tions. In this process, traditional metrology is very valuable:
it teaches us how to gauge the accuracy of the measuring in-
struments and even how to calibrate the instrument so as to
further increase its accuracy.

Need to take into account relation between quantities.
However, traditional metrology mostly concentrates on indi-
vidual measurements. In practice, often, in addition to the
relation between future and present values, there are also re-
lations between the current values of different quantities. For
example, there is usually an known upper bound on the dif-
ference between the values of the same quantity at close mo-
ments of time or at nearby locations.

It is known that such relation can lead to more accurate
measurement results. For example, suppose that we know
that the values of the mechanical stress at two nearby loca-
tions are in intervals [0.80, 1.00] and [0.90, 1.10]. If we know
that the difference between the actual values cannot exceed
0.01, this means that the first quantity cannot be smaller than
0.90 − 0.01, so we get a narrower interval [0.89, 1.00] – and
similarly, a narrower interval [0.90, 1.01] for the second quan-
tity.

In general, such relations take form of inequalities or in-
equalities. It is well known that any inequality or equal-
ity constraint can be described by inequalities of the type
gj(x1, . . . , xn) ≤ 0:

• a general inequality constraint

a(x1, . . . , xn) ≤ b(x1, . . . , xn)

is equivalent to

a(x1, . . . , xn)− b(x1, . . . , xn) ≤ 0,

and

• a general equality constraint

a(x1, . . . , xn) = b(x1, . . . , xn)
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is equivalent to two inequality constraints:

a(x1, . . . , xn)− b(x1, . . . , xn) ≤ 0 and

b(x1, . . . , xn)− a(x1, . . . , xn) ≤ 0.

For example, the above relation of the type |xi − xj | ≤ δ
means that we have two inequalities:

xi − xj ≤ δ and xi − xj ≥ −δ,

which are equivalent to

xi − xj − δ ≤ 0 and − δ − (xi − xj) ≤ 0.

In this case,

g1(x1, . . . , xn) = xi − xj − δ and

g2(x1, . . . , xn) = −δ − (xi − xj).

Case of indirect relations. So far, we have considered re-
lations that directly relate the measured quantities. However,
relations can also involve not-directly-measurable parameters
of a model that describes the corresponding phenomenon. For
example, we know that for a cantilever beam with a triangu-
lar line load linearly decreasing from q0 at distance 0 to 0 at
distance z = ℓ, the bending xi at location zi is determined by
the following formula:

xi = c1 ·
(
− 1

120ℓ
z5i +

1

24
z4i +

1

12
z3i · ℓ+ 1

12
z2i · ℓ2

)
,

where
c1

def
=

q0
E · I

.

We measure the values xi, but we do not directly the value c1.
Since different measurement results are related to the same
coefficient c, they are indirectly related to each other: namely,
we know the exact ratios xi/xj of the bendings corresponding
to different locations on the beam.

In general, we can have models with several not-directly-
measurable parameters c1, . . . , ck, so a general constraint can
take a form

gj(x1, . . . , xn, c1, . . . , ck) ≤ 0.

Based on the measurements, we can find estimates c̃i for these
parameters. Since these estimates are based on measure-
ments, and measurements are not absolutely accurate, these
estimates, in general, differ from the actual (unknown) values
of these parameters, i.e., we have a non-zero estimation errors

∆ci
def
= c̃i − ci.

What we do in this paper. In the paper, we analyze the gen-
eral problem of using known relation between quantities to
make measurements more accurate and more reliable.

Our main focus is on the – rather typical practical case –
when we only know the upper bound on the measurement er-
ror. Measurement errors are usually relatively small, so terms

quadratic (or higher order) with respect to measurement er-
rors can be safely ignored. We show that under this – usual –
linearization assumption, the corresponding problems can be
effectively solved by known linear programming algorithms.

We also consider the case when we know the probability
distributions of different measurement errors – and we know
the reliability of each measuring instrument and our degree
of confidence in each relation between the quantities. In this
case, the problem is computationally more difficult but still
solvable.

2. CASE OF INTERVAL UNCERTAINTY: A BRIEF
REMINDER

Description of the situation. In this section, we consider a
rather typical practical case, when for each measurement, we
only know the upper bound ∆ on the absolute value |∆x| of
the measurement error ∆x

def
= x̃ − x; see, e.g., [7]. In this

case, once we perform the measurement and get the measure-
ment result x̃, the only information that we now have about
the actual value x of the measured quantity is that this value
x is located in the interval [x̃ − ∆, x̃ + ∆]. Because of this,
this type of uncertainty is known as interval uncertainty; see,
e.g., [2, 4–6].

The upper bound is an absolute necessity. The upper bound
is the absolute minimum information that we need to know:
if we do not even know the upper bound on the measurement
error, this means that the actual value x can be as different
from the measurement result x̃ as possible. This is not a mea-
surement, this is a wild guess.

Of course, the upper bound is not the only information we
can have. Ideally, in addition to knowing this upper bound,
we should also know the probabilities of different values of
∆x. However, in many practical situations, the upper bound
is the only information that we have about the measurement
error.

In many practical situations, the upper bound is the only
information we have. Actually, there are two types of such
situations. One is the most common one, when we are per-
forming routine measurements – on the factory floor, in a
building, etc. In principle, we can calibrate each sensor and
get the probability distribution of its measurement error, but
nowadays, most sensors are very cheap – unless we are look-
ing for very accurate ones – while calibration is very expen-
sive. As a result, most sensors used in industry and in practice
are not calibrated very accurately. For example, for a sensor
that measures a body temperature, it is enough to know that
it provides temperature with accuracy probably ±0.2◦ C, it
makes no sense to come up with the exact probability distri-
bution.

Another case when the upper bound is the only infor-
mation we have is the case of state-of-the-art measurements,
when the usual calibration techniques are not applicable. In-
deed, the usual sensor calibration techniques assume that
there is a measuring instrument which is much more accurate
than the sensor that we are trying to calibrate. However, if
we perform the measurements with the most accurate sensor
available, then this sensor is already the most accurate, there
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is no more accurate one. In this case, the best we can do is
to get some theory-justified upper bound on the measurement
error.

But why not assume a uniform distribution? In practice,
when all we know is the upper bound on the measurement
error, people often assume that the measurement error is uni-
formly distributed on the corresponding interval [−∆,∆]. At
first glance, this assumption makes perfect sense: if we have
no reason to assume that some values from this interval, are
more probable than others, then it is reasonable to assume that
all the values are equally probable, i.e., that we have a uni-
form distribution. This argument goes back to Laplace and is
known as Laplace Indeterminacy Principle; see, e.g., [3].

However, one of the main purposes of metrology is to pro-
duce guaranteed information about the measured values of
different physical quantities. From this viewpoint, as we will
show on a simple example, selecting a uniform distribution
can lead to misleading conclusions.

Let us consider the simplest possible relation between
the desired quantity y and the easier-to-measure quantities
x1, . . . , xn:

y = x1 + . . .+ xn.

Let us also assume, for simplicity, that the measured values
x̃1, . . . , x̃n of all these quantities are 0s, and that for each of
these measurements, the only information that we have about
the possible values of the measurement error ∆xi = x̃i − xi

is that this value is bounded by a given positive number ∆.
In this case, all we know about each actual value xi is that
this value is located in the interval [−∆,∆]. In this situation,
what can we say about possible values of y?

Since each of the values xi is bounded from above by ∆,
the sum of n such terms cannot exceed n · ∆. On the other
hand, it is possible that each value xi is equal to ∆, in which
case their sum is exactly n ·∆.

Similarly, since each of the values xi is bounded from be-
low by −∆, the sum of n such terms cannot be smaller than
−n ·∆. On the other hand, it is possible that each value xi is
equal to −∆, in which case their sum is exactly −n ·∆. So,
the range of possible values of y is the interval [−n ·∆, n ·∆].

What if we assume that measurement errors are indepen-
dent and uniformly distributed on the interval [−∆,∆]? Each
of these distributions has mean 0 and variance ∆2/3. For
large n, according to the Central Limit Theorem (see, e.g.,
[8]), the distribution of y is close to Gaussian. For this Gaus-
sian distribution, the mean m is the sum of the means, i.e.,
m = 0, and the variance σ2 is the sum of the variances, i.e.,
σ2 = n · ∆2/3. For Gaussian distribution, with high confi-
dence, we usually conclude that the actual value is located in
the interval

[m− k · σ,m+ k · σ] :

• for k = 3, this is true with confidence 99.9%;

• for k = 6, this is true with confidence 1− 10−8.

So, with high confidence, we conclude that the actual value y
is located in the interval[

−
√
n · ∆√

3
,
√
n · ∆√

3

]
.

So, the upper bound resulting from the uniform-
distribution assumption is proportional to

√
n, while the ac-

tual bound grows as n. For large n,
√
n is much smaller

than n. So, even in this very simple example, the uniform-
distribution assumption drastically underestimates the inac-
curacy of the data processing result – which explains why we
will not use this assumption in our analysis.

Possibility of linearization. Measurement errors are usually
relatively small, so terms quadratic (or higher order) with re-
spect to measurement errors are much smaller than the lin-
ear terms. For example, even for a not very accurate mea-
surement, for which the measurement error is about 10%, the
square of this error is 1%, which is much smaller than 10%.
For more accurate measurements, the ratio of quadratic to lin-
ear terms is even smaller. So, we can safely ignore quadratic
and higher order terms in the Taylor expansion of the corre-
sponding dependencies, and retain only linear terms.

Let us apply this idea to the error ∆y
def
= ỹ−y in the result

of processing data caused by measurement errors. Here,

∆y = ỹ − y = f(x̃1, . . . , x̃n)− f(x1, . . . , xn). (1)

By definition of the measurement error ∆xi, we get xi =
x̃i − ∆xi. Substituting this expression into the formula (1),
we conclude that

∆y = f(x̃1, . . . , x̃n)− f(x̃1 −∆x1, . . . , x̃n −∆xn).

Expanding this expression in Taylor series in terms of ∆xi

and keeping only linear terms in this expansion, we conclude
that

∆y = f1 ·∆x1 + . . .+ fn ·∆xn, (2)

where we denoted

fi
def
=

∂f

∂xi |x1=x̃1,...,xn=x̃n

. (3)

Similarly, any constraint

gj(x1, . . . , xn, c1, . . . , ck) ≤ 0

takes the form

gj(x̃1 −∆x1, . . . , x̃n −∆xn, c̃1 −∆c1, . . . , c̃k −∆ck) ≤ 0.

Expanding this expression in Taylor series in terms of ∆xi

and keeping only linear terms in this expansion, we conclude
that

g̃j + gj1 ·∆x1 + . . .+ gjn ·∆xn+

mj1 ·∆c1 + . . .+mjk ·∆ck ≤ 0, (4)

where we denoted

g̃j
def
= gj(x̃1, . . . , x̃n, c̃1, . . . , c̃k),

gji
def
= −∂gj

∂xi |x1=x̃1,...,xn=x̃n,c1=c̃1,...,ck=c̃k

, (5)

mji
def
= −∂gj

∂ci |x1=x̃1,...,xn=x̃n,c1=c̃1,...,ck=c̃k

.

Now, we are ready to describe our general methodology
for taking into account relation between the variables.
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3. HOW TO USE KNOWN RELATIONS BETWEEN
QUANTITIES TO MAKE MEASUREMENTS

MORE ACCURATE: CASE WHEN WE SIMPLY
MEASURE THE QUANTITIES

Description of the problem. We measure n quantities
x1, . . . , xn and get n measurement results x̃1, . . . , x̃n. For
each measurement i, we know the upper bound ∆i on the ab-
solute values of the measurement error ∆xi = x̃i−xi. In this
case, we can conclude that each actual value xi is located in
the interval [x̃i −∆i, x̃i +∆i].

Suppose that we also know the relations between these
quantities

g1(x1, . . . , xn, c1, . . . , ck) ≤ 0,

. . . ,

gr(x1, . . . , xn, c1, . . . , ck) ≤ 0.

As we have mentioned in the previous section, since the mea-
surement errors are usually small, we can describe these rela-
tions in a simpler form (4). How can we use this info to get
more accurate estimates for the quantities x1, . . . , xn?

How we can solve this problem. For each i, the smallest
possible value of xi can be obtained by solving the following
constrained optimization problem:

Minimize x̃i −∆xi under the following constraints:

−∆1 ≤ ∆x1 ≤ ∆1, . . . ,−∆n ≤ ∆xn ≤ ∆n,

g̃1 + g11 ·∆x1 + . . .+ g1n ·∆xn+

m11 ·∆c1 + . . .+m1k ·∆ck ≤ 0,

. . . , (6)

g̃1 + gr1 ·∆x1 + . . .+ gjn ·∆xn+

mr1 ·∆c1 + . . .+mrk ·∆ck ≤ 0.

To find the largest possible value of xi, we need to maximize
x̃i −∆xi under the same constraints (6).

In both problems, we optimize the value of a linear expres-
sion under linear constraints. Such problems are known as
problems of linear programming; several efficient algorithms
are known for solving these problems; see, e.g., [9].

Once we use linear programming techniques and find:

• the solution xi to the minimization problem and

• the solution xi to the maximization problem,

we can conclude that the range of possible values of xi is
equal to [xi, xi].

Comment. A simple example that we used in Section 1 shows
that this can indeed lead to a drastic improvement of accuracy.

4. HOW TO USE KNOWN RELATIONS BETWEEN
QUANTITIES TO MAKE MEASUREMENTS

MORE ACCURATE: CASE OF DATA
PROCESSING

Description of the problem. We are interested in the value
of a difficult-to-measure quantity y that is related to several
easier-to-measure quantities x1, . . . , xn by a known relation
y = f(x1, . . . , xn). We measure n quantities x1, . . . , xn and

get n measurement results x̃1, . . . , x̃n. We plus in these mea-
surement results into the algorithm f and get the estimate
ỹ = f(x̃1, . . . , x̃n). What can we conclude about the pos-
sible values of the estimation error ∆y = ỹ − y?

We assume that for each measurement i, we know the up-
per bound ∆i on the absolute values of the measurement error
∆xi = x̃i−xi. In this case, the estimation error is determined
by the formula (2). In the absence of any other information,
all we can conclude about ∆y is that |∆y| ≤ ∆, where we
denoted

∆
def
= |f1| ·∆1 + . . .+ |fn| ≤ ∆n.

Suppose now that we also know the relations between
these quantities

g1(x1, . . . , xn, c1, . . . , ck) ≤ 0,

. . . ,

gr(x1, . . . , xn, c1, . . . , ck) ≤ 0.

As we have mentioned in the previous section, since the mea-
surement errors are usually small, we can describe these rela-
tions in the simpler form (4). How can we use this info to get
more accurate estimates for the quantities x1, . . . , xn?

How we can solve this problem. The smallest possible value
of ∆y can be obtained by solving the following constrained
optimization problem:

Minimize ỹ − (f1 ·∆x1 + . . .+ fn ·∆xn)

under the constraints (6).

To find the largest possible value of ∆y, we need to maximize
the same expression

ỹ − (f1 ·∆x1 + . . .+ fn ·∆xn)

under the same constraints (6).
Both problems are particular cases of linear programming,

so we can apply efficient linear programming algorithms to
solve these problems. Once we use linear programming tech-
niques and find:

• the solution y to the minimization problem and

• the solution y to the maximization problem,

we can conclude that the range of possible values of y is equal
to [y, y].

5. HOW TO USE KNOWN RELATIONS BETWEEN
QUANTITIES TO MAKE MEASUREMENTS

MORE RELIABLE

Formulation of the problems. A sensor can malfunction. As
a result, the value generated by this sensor will, in general,
become very different from the actual value of the measured
quantity. This leads to two natural questions.

The first natural question is: How can we detect that one
of the sensors malfunctioned? If we can detect this, this will
make the measurement results more reliable.

And the second natural question is: once we detect that
one of the sensors malfunctioned, how can we determine
which sensor malfunctioned?
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How to detect that one of the sensors malfunctioned: anal-
ysis of the problem. Suppose that, as in our first numerical
example, that we measure two related quantities x1 and x2

by two sensors, for each of which the upper bound on the ab-
solute value of the measurement error is ∆1 = ∆2 = 0.1.
Suppose that we know that the actual values x1 and x2 of two
quantities cannot differ by more than 0.01: |x1 − x2| ≤ 0.01.
Suppose that, as in our example, the first sensor produced the
value x̃1 = 0.9, but the second sensor malfunctioned and gen-
erated the value x̃2 = 2.0 – which is far away from the actual
(unknown) value x2. In this case, we cannot find two values
x1 and x2 for which |x1 − 0.9| ≤ 0.1, |x2 − 2.0| ≤ 0.1, and
|x1 − x2| ≤ 0.01. Indeed, in this case, x1 ≤ 1.0, x2 ≥ 1.9
and thus, the difference x2 − x1 is larger than or equal to
1.9− 1.0 = 0.9 – much larger than 0.01.

This is a typical situation: if one of the sensors malfunc-
tions, it is highly probable that the system of constraints (6)
can no longer be satisfied. So, we arrive at the following sug-
gestion.

How to detect that one of the sensors malfunctioned: idea.
If the system of inequalities (6) is inconsistent, this means that
oe of the sensors malfunctioned.

Checking consistency of a system of linear inequalities
can be done by the same efficient linear programming algo-
rithms that we mentioned earlier.

How can we determine which sensor malfunctioned. If the
system of inequalities (6) is no longer consistent, what we
can do is try, for each i from 1 to n, to delete all inequali-
ties involving ∆xi from the system (6) and check whether the
resulting reduced system is still consistent.

• When we delete a well-functioning sensor i, the system
(6) will still contain the inequalities coming from the
malfunctioning sensor and thus, the system (6) will most
probably still be inconsistent.

• However, when we delete the malfunctioning sensor, the
remaining system will become consistent.

So, we can determine the malfunctioning sensor as the one
whose deletion makes the system (6) consistent.

Comments.

• On the qualitative level, this idea is far from being new:
it is used a lot. For example, if a thermometer show a
temperature of 5 C in an office while in a neighboring
office a thermometer shows 20C, this clearly means that
one of these sensor malfunctioned. When a car flashes
a red light indicating that something may be wrong, me-
chanics always compare with other measurement results
to make sure that it is a real problem, and not a sensor
malfunction.

• A similar idea can be used to detect whether the physical
systems itself – whose quantities we are measuring – is
malfunctioning. Usually, there are some thresholds for
the corresponding quantities. For example, for a build-
ing, stresses should exceed a certain level; for a chemical
plant, temperature in the reactor must lie within given
bounds, etc. If some values from the interval [y, y] that
we obtain get outside these bounds, this is an indication
that something needs to be done.

6. APPLICATION TO DIGITAL TWINS

Digital twins: a brief description and the main metrology-
related challenges. To understand how different effects and
different controls will affect a system – be it an airplane, a
building, a plant – a good idea is to design an accurate simu-
lating program. Such program are known as digital twins.

From the metrological viewpoint, there are two major
challenges related to digital twins. The first challenge is re-
lated to the fact that we determine the parameters c1, . . . , ck
of the corresponding model based on some preliminary mea-
surements. The value ci are determined based on measure-
ments and are, thus, only known with some uncertainty: the
estimated values c̃i used in the design of the digital twin are,
in general, somewhat different from the ideal best-fit values
ci; there is an estimation error ∆ci = c̃i − ci. As a result, the
values predicted by a digital twin are, in general, somewhat
different from what we actually observe. However, the cur-
rent digital twins do not provide us with any bounds on this
difference. It is therefore desirable to make digital twins gen-
erate not the numerical values – as now – but rather intervals
of possible values.

The second major challenges related is that the current
digital twins do not learn. As we compare the predictions of
the digital twin with how the actual system behaves, we get
additional information that can potentially help us make the
model more accurate – but in the current digital twin technol-
ogy, there is no easy way to do it. How can we make a digital
twin that learns? There exist effective machine learning tools
like deep learning (see, e.g., [1]), but these tools require a lot
of data to train, and we rarely have that much data about the
actual physical system. So, what can we do?

How to make digital twins learn: main idea. The for-
mulas describing the digital twin can be formulated as con-
straints. For example, if the digital twin predict the value xi

as ti(c1, . . . , ck), for some algorithm ti, this can be described
as an equality xi = ti(c1, . . . , ck). Now, each measurement
of the actual values of each physical quantity results in this
equality constraint plus the usual constraint |xi − x̃i| ≤ ∆i.
So, to get a better constraint on the values of each of the
parameters ci, we can maximize and minimize each value
c̃i − ∆ci under the corresponding constraints (6). As we
add more and more measurement results, the corresponding
bounds [ci, ci] will lead to more and more accurate descrip-
tion of the best-fit parameters ci.

This will also help digital twins return intervals, and not
just numbers without any estimates of their accuracy. This
way, digital twins will not only predict approximate estimates
– we can also use the above-described ideas to generate the
bounds on possible values of ti(c1, . . . , ck) when each ci is in
the corresponding interval.

How can we make this idea more practical. In the above
idea, each additional measurement adds new inequalities to
the system (6) of inequalities. As the number of inequalities
grows, the computation time needed to solve this system of
inequalities also grows, and at some point, it may exceed the
computational ability of the computational system.

To make computations realistic, we can use the following
natural idea:
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• first, we perform a certain number M of measurements,
and use the above scheme to find the better bounds

ci ≤ ci = c̃i −∆ci ≤ ci

on the parameters ci;

• then, we again start measuring and comparing the mea-
surement results with the predictions of the digital twin;
once we have made M new measurements, we form a
system (6) that takes into account only these new M
measurements, plus uses k inequalities

ci ≤ ci = c̃i −∆ci ≤ ci

that we determined earlier; solving this system of in-
equalities leads us to more accurate bounds ci and ci;

• then, we again perform M new measurements, etc.

In this case, the number of inequalities that we need to process
remains limited.

Comment. Instead of waiting for all M measurements to com-
plete, we can – if we have enough computational power – re-
peat this procedure every time we get a new measurement, but
using only M latest measurement results.

7. WHAT IF WE HAVE PROBABILISTIC
UNCERTAINTY?

In the previous sections, we consider the case when we
only know the bounds on the measurement errors, and we
do not have any information about the probabilities of dif-
ferent values within these bounds. In many practical situa-
tions, however, we know the corresponding probability distri-
butions. In such situations, how can we use known relations
between the measured quantities to make measurements more
accurate?

One possibility is to use Monte-Carlo simulations.
Namely, many times, we simulate probability distributions
for all n measurement errors ∆xi, but then dismiss all sim-
ulated tuples (∆x1, . . . ,∆xn) that do not satisfy the inequal-
ities describing the known relations. Based on remaining tu-
ples, we can get the histograms of the corresponding values

∆xi and/or ∆y and thus, get a good understanding of the
probability distributions that take into account the relations
between the quantities xi.
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