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Abstract—Elon Musk’s successful “move fast and break
things” strategy is based on the fact that in many cases, we
do not need to satisfy all usual constraints to be successful. By
sequentially trying smaller number of constraints, he finds the
smallest number of constraints that are still needed to succeed
– and using this smaller number of constrains leads to a much
cheaper (and thus, more practical) design. In this strategy, Musk
relies on his intuition – which, as all intuitions, sometimes works
and sometimes doesn’t. To replace this intuition, we propose
an algorithm that minimizes the worst-case cost of finding the
smallest number of constraints.

Index Terms—optimal design, worst-case cost, move fast and
break things, Elon Musk

I. FORMULATION OF THE PROBLEM

General strategy behind the successes of Elon Musk.
Elon Musk has had many successes in different application
areas: from a successful electronic financial system Paypal to
practical electric cars to effective reusable rockets for space
exploration.

According to a recent semi-authorized biography of Elon
Musk [2] – semi-authorized in the sense that the author was
allowed to follow Musk for several years – Musk’s general
“move fast and break things” strategy (that has led to his
many successes) is motivated by his experience that not all the
constraints that are usually required for a design are actually
necessary. Instead of following all the constraints — which
would make the design very expensive – he tries to find
the smallest number of constraints that are still necessary for
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the success. This minimal necessary number of constraints is
usually much smaller than what is currently required. As a
result, his final design – that does not have to follow all the
original constraints – is drastically cheaper.

Musk’s usual strategy for finding the minimal number of
constraints uses the fact that usually, all the constraints can be
naturally sorted in the descending order of their importance
– so that the most important ones are listed first. What
Musk does is he guesses the minimally necessary number
of constraints, and makes a design based on these many
constraints.

• If the resulting design works – e.g., if the rocket success-
ful reaches the orbit – then he tries to see if some other
constraints are not necessary.

• If the cut was too harsh – and the resulting rocket design
is not successful, the rocket explodes – then he tries a
design in which more original constraints are satisfied.

Can we replace intuition in this strategy? The above-
described strategy is based on intuition, on guessing the
minimally necessary number of constraints. Sometimes this
intuition works, sometimes it does not: for example, for a
reusable rocket, the first guess, that only 10 constraints are
necessary, led to an explosion. A natural question is: can we
replace intuition with justified recommendations?

How can we replace intuition: an idea. The main objective is
to minimize the cost of this search for this minimal number of
constraints. Usually, Musk deals with a completely new area,
in which there is practically no past experience, so we cannot
come up with meaningful probabilities of different situations.
In such cases, a natural idea is to minimize the worst-case cost
of a strategy.



In finding the strategy that minimizes the cost, we need to
take into account that the cost of each experiment drastically
depends on whether this experiment led or a success or to a
failure: for example, if a rocket blows up, the cost is much
larger that when it successfully returns to Earth. So, we need
to distinguish between the cost of success c and the cost of
failure C – which is much larger than c.

We cannot completely avoid failures – if we do not ex-
perience a failure, how can we be sure that the number of
constraints is indeed the smallest possible? But what we need
to do is to minimize the overall cost of this search, including
the cost of possible failures.

What is known and what we do in this paper. In this
paper, we present a solution to the corresponding optimization
problem.

To come up with this solution, we utilize optimization
results about other situations from three of our previous
papers:

• in [5], [6], we developed an asymptotically optimal
algorithm for finding the shortest plan;

• in [4] (see also [3]), we considered the problem of optimal
elicitation of information from an expert, and

• in [1], we considered the problem of finding the optimal
individual dose of a medicine, in a typical situation in
which the overdose of the medicine may be much more
harmful than its underdose.

While the related practical problems are different from our
current problem, it turns out that from the mathematical and
computational viewpoint, all these optimization problems are
somewhat similar. Thus, our algorithm can be obtained by
an appropriate modification of algorithms developed for these
previous problems.

II. ANALYSIS OF THE PROBLEM AND THE RESULTING
OPTIMAL ALGORITHM

Problem: reminder. In general, we have a situation in which
we have a list of N constrains, and we know that following all
these constraints leads to a success. We also know that if we
do not follow any constraints at all, the result will be a failure.
Our task is to find the number of constraints k ∈ (0, N) to
try.

• If the result of this experiment is a failure, this means
that the first k constraints are absolutely necessary, so the
question is how many of the remaining N−k constraints
we shall try next.

• If the result of this experiment is a success, this means
that we only need some of these k constraints, so the
question is how many of these k constraints we shall try
next.

In line with the previous section, we will denote the cost of a
successful experiment by c, and the cost of a failed experiment
by C.

Let us describe this problem in precise terms. Let us denote
by c(N) the smallest worst-case cost of a strategy that finds

the minimal necessary number of constraints in a situation
when we have N original constraints.

When N = 1, there is no need to have any experiments:
we have only one constraint, and we know that without this
constraint, the system will not work. In this case, the cost is
0: c(1) = 0.

When N ≥ 2, we need to find the optimal number of
constraints. To do that, we select the number of constraints
k ∈ (0, N) to try. The resulting cost depends on whether this
experiment is a success or a failure:

• If the experiment of satisfying only k < N constraints
was a success, this means that we spent the amount c
on this experiment, and we also need to spend amount
c(k) to find the smallest possible number of the selected
k constraints. So, in this case, the cost if c+ c(k).

• If the experiment of satisfying only k < N constraints
was a failure, this means that we spent the amount C
on this experiment, and we also need to spend amount
c(N − k) to find the smallest possible number of the
remaining N − k constraints. So, in this case, the cost if
C + c(N − k).

The worst-case cost of testing k constraints is the largest of
these two amounts, i.e.:

max(c+ c(k), C + c(N − k)).

The optimal worst-case cost c(N) corresponds to the case
when we select k that minimizes this worst-case cost, i.e.:

c(N) = min
0<k<N

max(c+ c(k), C + c(N − k)). (1)

This formula naturally leads to the following algorithm.

Proposed algorithm. Suppose that we know the values c, C,
and N0. Then, we take c(1) = 0, and for N = 2, 3, . . . , N0,
we use the formula (1) to sequentially compute the values

c(2), c(3), . . . , c(N0).

In this process, for each value N ≤ N0, we get the value
k(N) that minimizes the expression (1).

Then, we select k0 = k(N0) constraints to try.
• If the experiment of satisfying only k0 constraints was

a success, this means that we need to find the smallest
possible number of the selected k0 constraints. In line
with our analysis, we select k(k0) constraints to try.

• If the experiment of satisfying only k0 < N constraints
was a failure, this means that need to find the smallest
possible number of the remaining N − k0 constraints. In
line with our analysis, we select k(N − k0) additional
constraints to try – in addition to the k0 constraints that
turned out to be absolutely necessary.

Numerical example. Suppose that c = 1, C = 2, and N0 = 4.
Here, c(1). Then, first, we compute

c(2) = min
0<k<2

max(c+ c(k), C + c(2− k)) =

max(c+ c(1), C + c(1)) = max(1 + 0, 2 + 0) = 2.



In this case, k(2) = 2.
Then, we compute

c(3) = min
0<k<3

max(c+ c(k), C + c(3− k)) =

min(max(c+ c(1), C + c(2)),max(c+ c(2), C + c(1)) =

min(max(1 + 0, 2 + 2),max(1 + 2, 2 + 0)) =

min(4, 3) = 3.

In this case, the minimum is attained when k = 2, so k(3) = 2.
After that, we compute

c(4) = min
0<k<4

max(c+ c(k), C + c(3− k)) =

min(max(c+ c(1), C + c(3)),max(c+ c(2), C + c(2)),

max(c+ c(3), C + c(1))) =

min(max(1+0, 2+3),max(1+2, 2+2),max(1+3, 2+0)) =

min(5, 4, 4) = 4.

In this case, the minimum is attained when k = 2 or when
k = 3, so we can select both k(4) = 2 or k(4) = 3.

If we select k(4) = 3, then first, we try satisfying only 3
constraints. Then:

• if this results in a success, i.e., if we know that 3
constraints are sufficient, we will then – since k(3) = 2
– need to check if two constraints are sufficient;

• if this results in a failure, then we know that 3 constraints
are not sufficient, so the original 4 constrains is the
smallest number that need to be satisfied.

Computational complexity of our algorithm. For each
N = 2, 3, . . . , N0, to compute the value c(N), we need to
compute and compare N − 1 sums, so the computation time
is proportional to N − 1. Thus, the overall computation time
is proportional to

(2− 1) + (3− 1) + . . .+ (N0 − 1) =

1 + 2 + . . .+ (N0 − 1) =

(N0 − 1) ·N0

2
.

So, the computational complexity is proportional to N2
0 –

which is quite feasible, since N0 is usually in the dozens.

Asymptotic formula for c(N). The following result holds:

Proposition. For every c and C, there exists a constant C0

such that for all N , we have

|c(N)− a · log2(N)| ≤ C0,

where a is the solution to the equation

2−c/a + 2−C/a = 1.

Comments.

• This result means that asymptotically, for large N , we
have

c(N) ≈ a · log2(N).

• For example, in the above case c = 1 and C = 2, the
equation for a takes the form t + t2 = 1, where we
denoted t

def
= 2−1/a. Thus, t is the golden ratio

t =

√
5− 1

2
≈ 0.618,

and
a = − 1

log2(t)
.

• The proof of this proposition is given in the Appendix.
• This proof also shows that we get an asymptotically

optimal strategy if instead of selecting the optimal k(N),
we select the value k = ⌊α ·N⌋, where α

def
= 2−c/a.
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APPENDIX: PROOF OF THE PROPOSITION

General idea. To prove this result, let us consider an al-
ternative procedure B in which, instead of selecting the
optimal value k(N), we select the value k = ⌊α ·N⌋, where
α

def
= 2−c/a. Let us denote, by b(N), the worst-case cost of

this procedure.
We will prove that there exist constants C0 > 0 and C1 > 0

such that for every N , we have

a · log2(N) ≤ c(N)

and
b(N) ≤ a · log2(N) + C0 −

C1

N
.

By definition, c(N) is the smallest worst-case cost of all
possible procedures, thus, c(N) ≤ b(N). So, if we prove the
above two inequalities, we will indeed complete the proof of
the Proposition.

Proof of the first inequality. Let us first prove the first
inequality by induction over N . The value N = 1 represents
the induction base. For this value, a · log2(1) = 0 = c(1), so
the inequality holds.



Let us now describe the induction step. Suppose that we
have already proved the inequality a · log2(n) ≤ c(n) for all
n < N . Let us prove that a · log2(N) ≤ c(N).

By definition c(N) is the smallest of the values

max{c+ c(k), C + c(N − k)}

over k = 1, 2, . . . , N−1. So, to prove that a·log2(N) is indeed
the lower bound for c(N), we must prove that a · log2(N)
cannot exceed each of these values, i.e., that

a · log2(N) ≤ max{c+ c(k), C + c(N − k)}

for every k = 1, 2, . . . , N − 1. For these k, we have k < N
and N −k < N , so for all these values, we already know that
a · log2(k) ≤ c(k) and

a · log2(N − k) ≤ c(N − k).

Therefore,
c+ a · log2(k) ≤ c+ c(k),

C + a · log2(N − k) ≤ C + c(N − k),

and

max{c+ a · log2(k), C + a · log2(N − k)} ≤

max{c+ c(k), C + c(N − k)}.

So, to prove the desired inequality, it is sufficient to prove that

a · log2(N) ≤

max{c+ a · log2(k), C + a · log2(N − k)}.

We will prove this inequality by considering two possible
cases: k ≤ α ·N and k ≥ α ·N :

• When k ≤ α · N , we have N − k ≥ (1 − α) · N and
therefore,

C + a · log2(N − k) ≥ z,

where
z

def
= C + a · log2((1− α) ·N) =

C + a · log2(N) + a · log2(1− α).

Here, by definition of α, we have α = 2−c/a, and by
definition of a, we have 2−c/a + 2−C/a = 1. Thus,

1− α = 2−C/a,

hence log2(1− α) = −C/a, so

C + a · log2(1− α) = 0,

and thus, z = a · log2(N). In this case,

a · log2(N) ≤ z = C + a · log2(N − k) ≤

max{c+ a · log2(k), C + a · log2(N − k)}.

• When k ≥ α ·N , we have c+ a · log2(k) ≥ z, where

z
def
= c+ a · log2(α ·N) =

c+ a · log2(N) + a · log2(α).

By definition of α, we have α = 2−c/a, hence log2(α) =
−c/a, and z = a · log2(N). So, in this case,

a · log2(N) ≤ z = c+ a · log2(k) ≤

max{c+ a · log2(k), C + a · log2(N − k)}.

In both cases, we have the desired inequality. The induction
step is proven, and so, indeed, for every N , we have

a · log2(N) ≤ c(N).

Proof of the second inequality. Let us now prove that there
exist real numbers C0 > 0 and C1 > 0 for which, for all N ,

b(N) ≤ a · log2(N) + C0 −
C1

N
.

To prove this inequality, we will pick a value N0, prove
that this inequality holds for all N ≤ N0, and then use
mathematical induction to show that it holds for all N > N0

as well.

Induction basis. Let us first find the conditions on C, C1, and
N0 under which for all N ≤ N0,

b(N) ≤ a · log2(N) + C0 −
C1

N
.

Subtracting a · log2(N) and adding
C1

N
to both sides of the

this inequality, we get

C0 ≥ C1

N
+ b(N)− a · log2(N)

for all N from 1 to N0. So, to guarantee that this inequality
holds, if we have already chosen N0 and C1, we can choose

C0 = max
1≤N≤N0

(
C1

N
+ b(N)− a · log2(N)

)
.

Induction step. Let us assume that for all n < N (where
N > N0), we have proven that

b(n) ≤ a · log2(n) + C0 −
C1

n
.

We would like to conclude that

b(N) ≤ a · log2(N) + C0 −
C1

N
.

According to the definition of b(N), we have

b(N) = max{c+ b(k), C + b(N − k)},

where k = ⌊α ·N⌋. Due to induction hypothesis, we have

b(k) ≤ a · log2(k) + C0 −
C1

k

and

b(N − k) ≤ a · log2(N − k) + C0 −
C1

N − k
.



Therefore,

b(N) ≤ max

{
c+ a · log2(k) + C0 −

C1

k
,

C + a · log2(N − k) + C0 −
C1

N − k

}
.

Thus, to complete the proof, it is sufficient to conclude that
this maximum does not exceed

a · log2(N) + C0 −
C1

N
.

In other words, we must prove that

c+ a · log2(k) + C0 −
C1

k
≤ a · log2(N) + C0 −

C1

N
(2)

and that

C + a · log2(N − k) + C0 −
C1

N − k
≤

a · log2(N) + C0 −
C1

N
.

Without losing generality, let us show how we can prove the
first of these two inequalities. Since k = ⌊α ·N⌋, the left-hand
side of the inequality (2) can be rewritten as

c+ a · log2(α ·N) + a · (log2(k)− log2(α ·N))+

C0 −
C1

k
.

We already know that c+a · log2(α ·N) = a · log2(N). Thus,
the left-hand side of (2) takes the simpler form

a · log2(N) + a · (log2(k)− log2(α ·N)) + C0 −
C1

k
.

Substituting this expression into (2) and canceling the terms

a · log2(N)

and C0 in both sides, we get an equivalent inequality

a · (log2(k)− log2(α ·N))− C1

k
≤ −C1

N
. (3)

Let us further simplify this inequality. We will start by
estimating the difference log2(k)−log2(α·N). To estimate this
difference, we will use the intermediate value theorem, accord-
ing to which, for every smooth function f(x), and for arbitrary
two values A and B, we have f(A)−f(B) = (A−B) ·f ′(ξ)
for some ξ ∈ [A,B]. In our case,

f(x) = log2(x) =
ln(x)

ln(2)
,

A = k, and B = α ·N . Here,

f ′(ξ) =
1

ξ · ln(2)
,

so
f ′(ξ) ≤ 1

k · ln(2)
;

also, |A − B| ≤ 1, so, the difference log2(k) − log2(α · N)
can be estimated from above by:

log2(k)− log2(α ·N) ≤ 1

k · ln(2)
.

Hence, the above inequality holds if the following stronger
inequality holds:

a

k · ln(2)
− C1

k
≤ −C1

N
,

or, equivalently,

C1

N
≤ C1 − a/ ln(2)

k
. (4)

Here, k ≥ α ·N − 1, i.e.,

k

N
≥ α− 1

k
.

When N → ∞, we have k → ∞ and
1

k
→ 0. Thus, for every

ε > 0, there exists an N0 starting from which
1

k
≤ ε and

hence, k ≥ (α − ε) · N . For such sufficiently large N , the
inequality (4) can be proven if we have

C1

N
≤ C1 − a/ ln(2)

(α− ε) ·N
,

i.e., if we have

C1 ≤ C1 − a/ ln(2)

α− ε
. (5)

Since α ≤ 1, for sufficiently large C1, this inequality is true.
For such C1, therefore, the induction can be proven and thus,
the Proposition is proven.

We have also proved – as promised – that the Algorithm B
leads to asymptotically optimal worst-case cost.


