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Abstract

To make education more effective, to better use emerging technologies
in education, we need to better understand the education process, to gain
insights on this process. How can we check whether a new idea is indeed
a useful insight? A natural criterion is that the new idea should explain
some previously-difficult-to-explain empirical phenomenon. Since one of
the main advantages of emerging educational technologies – such as AI –
is the possibility of individualized education, a natural phenomenon to ex-
plain is the fact – discovered by Benjamin Bloom – that individualization
adds two sigmas to the average grade. In this paper, we provide a possible
theoretical explanation for this two-sigma phenomenon. In our explana-
tion, we use another previously-difficult-to-explain empirical fact: that the
grade distribution is often bimodal – and we explain this auxiliary fact
too. In view of the above, we hope that our explanations will eventually
lead to a more effectively use of emerging technologies in education.

1 Formulation of the Problem

To improve education, we need to better understand the correspond-
ing processes. How can we make teaching more effective? How can we best
use emerging technologies to improve the effectiveness of education?

Many researchers and practitioners have seemingly promising ideas. As we
all know, some seemingly promising ideas work, but many don’t work as ex-
pected – moreover, many of the un-tested seemingly reasonable ideas actually
decrease the education’s effectiveness. So, trial-and-error approach is not the
best way here – we do not want the students to suffer while we are experiment-
ing. Since with the current understandings about education we still have this
significant potentially negative effect, a natural idea is to come up with new
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understandings – that will help us better filter the ideas and thus, decrease the
potentially negative effect of testing.

How do we know that a new understanding works? The same way we know
that a new physical theory works – if the new understanding explains some
well-observed phenomenon that was difficult to explain before, this means that
this understanding indeed contributes to the body of knowledge.

Which difficult-to-explain phenomenon should we target? With
computer-based techniques and tools – especially newly developed AI tools –
becoming ubiquitous, one of the main challenges is to analyze how to better use
these tools. One of the main advantages of these tools – in comparison with the
traditional education – is that they provide a realistic path to individualized
education. Of course, individualized education, where the learning approach
is optimized individually for each student, is a much more effective way for a
student to learn. However, in the traditional approach to education, it is not
possible to attain such individualization: this would require to have almost as
many teachers as students, which is not realistic. Intelligent computer-based
systems promise exactly such an individualization.

And here is a related theoretical challenge. Over decades, numerous ex-
periments confirmed that individualized education is better. This qualitative
fact is easy to explain. Interestingly, there is also a quantitative aspect to this
phenomenon, and this quantitative aspect is difficult to explain – that individ-
ualized education increases the average grade by two standard deviations (“two
sigmas”); see [1], see also [7]. In precise terms, if we denote the mean grade for
the traditional education by m and the corresponding standard deviation by σ,
then the average grade of the individualized education is very close to m+ 2σ.
This is the phenomenon that we explain in this paper.

What we do in this paper. In Section 2, to explain the two-sigma phe-
nomenon, we use another well-known phenomenon – that in many cases, the
class grades follow a bimodal distribution, where the majority of the students
perform at an average level (forming one cluster), and much fewer students per-
form very well (forming a second cluster); see, e.g., [5] and references therein;
see also [4]. Our explanation naturally raises the next question: how can we
explain the bimodal distribution? This we do in Section 3.

In line with our arguments in the beginning of this section, we hope that our
explanations will eventually lead to more effective education – and, in particular,
to a more effective use of emerging technologies in education.

2 Why Individualized Teaching Adds Two
Sigma to the Average Grade: An Explanation

What does bimodal distribution mean? As we have mentioned, bimodal
distribution means that most students are at the average-grade level, while much
fewer students are at the high-grade level. Let us denote the typical average-
grade level by a and the typical high-grade level by h.
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What does “much fewer” mean? To analyze this situation, let us describe
the “much fewer” in precise terms. From the commonsense viewpoint, it is
reasonable to interpret “much fewer” as “fewer than fewer”: n being much
fewer than N means that there is some intermediate value i such that n is fewer
than i and i is fewer than N . So, to describe “much fewer” in precise terms, it
is sufficient to describe “fewer” in precise terms.

Fewer means that the ratio i/n is smaller than 1 – i.e., that this ratio belongs
to the open interval (0, 1). Since we have no information about the relative
probability of different values r from this interval, we therefore have no reason to
believe that some values are more probable than others. Thus, it makes perfect
sense to assume that all these values are equally probable. This argument dates
back to Laplace and is this known as Laplace Indeterminacy Principle; see, e.g.,
[3].

The probability distribution in which each value is equally probable is known
as the uniform distribution. We want to select a single value as a representative
of this distribution. A natural idea is to select the mean – which in this is the
same as the median, and is equal to r = 0.5.

Thus, we can conclude that “n fewer than i” can be naturally interpreted as
n = i/2. Similarly, “i fewer than N” can be naturally interpreted as i = N/2.
Substituting this value i into the formula for n, we conclude that n = N/4. So,
the proportion ph of high-grade students is 4 times smaller than the proportion
pa of the average-grade students: ph = pa/4.

Since these two proportions should add up to 1, i.e., pa + ph = 1, we thus
conclude that pa + pa/4 = 1, i.e., 5/4 · p1 = 1 and thus. pa = 4/5 = 0.8.
Correspondingly, ph = 1− p1 = 1− 0.8 = 0.2.

Let us estimate the average grade and standard deviation for tradi-
tional education and the average grade under individualized educa-
tion. Under the traditional education, 0.8 of students get the grade a while 0.2
of students get the grade h. Thus, the average grade for traditional education
is mt = 0.8 · a+ 0.2 · h.

If we have a fully individualized education, education that perfectly reflects
the individual features of each student, that fully unlocks the potential of each
student, then all the students will be able to reach the high level h. So, under
the individualized education, the average grade is mi = h. Thus, individualized
education will increase the average grade by the difference

∆m
def
= mi −mt = h− (0.8 · a+ 0.2 · h) =

(1− 0.2) · h− 0.8 · a = 0.8 · h− 0.8 · a = 0.8 · (h− a). (1)

For the case of traditional education, the variance V = σ2 – i.e., the mean
value of the square of the difference between the actual grade and the average
grade – is equal to

V = 0.8 · (a−mt)
2 + 0.2 · (h−mt)

2. (2)

Here,
a−mt = a− (0.8 · a+ 0.2 · h) = (1− 0.8) · a− 0.2 · h =
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0.2 · a− 0.2 · h = −0.2 · (h− a),

so
(a−mt)

2 = 0.22 · (h− a)2. (3)

Similarly,

h−mt = h− (0.8 · a+ 0.2 · h) = (1− 0.2) · h− 0.8 · a =

0.8 · h− 0.8 · a = 0.8 · (h− a),

so
(h−mt)

2 = 0.82 · (h− a)2. (4)

Substituting the expressions (3) and (4) into the formula (2), we conclude that

V = σ2 = 0.8 · 0.22 · (h− a)2 + 0.2 · 0.82 · (h− a)2 =

0.2 · 0.8 · (0.2 + 0.8) · (h− a)2 = 0.16 · (h− 1)2.

Thus, the standard deviation is equal to

σ =
√
V =

√
0.16 · (h− a)2 = 0.4 · (h− a). (5)

This explains Bloom’s two-sigma increase. By comparing the increase
∆m as described by the formula (1) and the standard deviation σ as described
by the formula (5), we conclude that indeed ∆m = 2σ. Thus, we have indeed
explained Bloom’s two-sigma phenomenon.

3 But Why Is Grade Distribution Bimodal?

We still need to explain why the grade distribution is often bimodal.
Our explanation of the Bloom’s two-sigma empirical fact is based on yet another
difficult-to-explain empirical fact: that the grade distribution is often bimodal.
So, to make out explanation of the Bloom’s two-sigma increase more convincing,
it is desirable to explain the bimodality as well.

Analysis of the problem. What causes some students to perform at a lower-
than-high level? The very fact that individualized education can bring all the
students to the high-grade level shows that this is not the question of students
ability. Since the reason is not the ability, the reason must be attitude, i.e.,
student’s interest in the corresponding class.

For students who eventually get the high-level grade h, the interest is the
largest, while for students who eventually get the average-level grade a, the
interest is the smallest. It is therefore reasonable to gauge the student’s interest
by the student’s grade g.

It makes sense to measure the level of the interest on the scale from 0 to 1,
with 1 being the largest level of interest and 0 being the lowest level of interest.
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It is therefore reasonable to perform a linear transformation from the a-to-h
scale to 0-to-1 scale:

g → ℓ =
g − a

h− a
.

Instead of level of interest ℓ, we can talk about positive attitude a+ = ℓ and
about the remaining negative attitude a− = 1− ℓ = 1− a+.

Students team together and influence each other, and this leads to
polarization. Students taking the same class stick together, study together,
hang out together. Usually, students who are most similar stick together. In
particular, this means that students with similar attitudes stick together.

When students work together, study together, collaborate, they influence
each other: students with positive attitude infect other students with their
positive attitude and, vice versa, students with negative attitude infect other
students with their negative attitude. When two students with mostly posi-
tive attitude affect each other, their positive attitude increases – and continues
increasing until it reaches the maximum. Similarly, when two students with
mostly negative attitude affect each other, their negative attitude increases –
and continues increasing until it reaches the maximum – i.e., when it reaches
the minimum of positive attitude.

This explains why, as a result, we have a bimodal distribution (and it also
explains political polarization that have been observed in the US).

A simple mathematical model. Let us illustrate this phenomenon on a
simple mathematical model. For a person A to be affected by person B’s attitude
– be it positive or negative attitude – we need to have this attitude in person
B, and we also need person A to be amenable – i.e., have some of this attitude
already. In general, the resulting effect e on A depends on the attitudes of A
and B: e = e(aA, aB). The effect is 0 if either B has no such attitude, i.e., if
aB = 0 or if A has no such attitude, i.e., if aA = 0.

To get a first-approximation description of this effect, it is reasonable to
expand the dependence e(aA, aB) in Taylor series and keep the first non-zero
terms in this expansion; this is a usual – and very successful – idea in physics
applications; see, e.g., [2, 6]. In general, we have

e(aA, aB) = c0 + cA · aA + cB · aB + cAA · a2A + cBB · a2B + cAB · aA · aB + . . .

Since the effect should be 0 when aB = 0, we get c0 = cA = cAA = 0. Similarly,
since the effect should be 0 when aA = 0, we get c0 = cB = cBB = 0. Thus, the
first possibly non-linear term is e ≈ cAB · aA · aB.

As we have mentioned, communicating with a person whose attitude is pos-
itive increases the person’s positive attitude, so we should have cAB > 0.

So, when two students with similar attitudes a+ and a− affect each other:

� each student’s positive attitude increases by cAB · a2+, to a+ + cAB · a2+,
and

� each student’s negative attitude increases by cAB · a2−, to a− + cAB · a2−.
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The sum of attitudes should be 1, so we should normalize the resulting values
by dividing them by the sum of these two values. As a result, the new positive
attitude becomes equal to

a+ + cAB · a2+
a+ + cAB · a2+ + a− + cAB · a2−

.

This process continues until the influence stop affecting the attitude, i.e., until
the new value of the attitude becomes equal to the original value

a+ + cAB · a2+
a+ + cAB · a2+ + a− + cAB · a2−

= a+.

This is clearly true when a+ = 0. If a+ > 0, we can divide both sides of this
equality by a+. Then, if we substitute a− = 1 − a+ into this formula and
multiply both sides by the denominator, we conclude that:

1 + cAB · a+ = 1 + cAB · a2+ + cAB · (1− a+)
2.

Subtracting 1 from both sides and dividing both sides by cAB ̸= 0, we conclude
that a+ = a2+ + (1 − a+)

2. If we open parentheses and move all the terms to
one side, we get 2a2+− 3a++1 = 0, i.e., (2a+− 1) · (a+− 1) = 0. Thus, we have
either a+ = 1 or a+ = 0.5.

One can check that the second case is unstable: collaboration with someone
whose a+ is slightly larger than 0.5 will eventually lead to a+ = 1, while collab-
oration with someone whose a+ is slightly smaller than 0.5 will eventually lead
to a+ = 0. Thus, the only two stable situations are a+ = 0 and a+ = 1 – which
is exactly the bimodal distribution that we observe.
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