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Abstract It is well known that every color can be represented as a combination
of three basic colors: red, green, and blue. In particular, we can get several colors
by combining two of the basic colors. Interestingly, while a combination of two
neighboring colors leads to a color that corresponds to a certain frequency, the com-
bination of two non-neighboring colors – red and blue – leads to magenta, a color
that does not correspond to any frequency. In this paper, we provide a simple expla-
nation for this phenomenon, and we also show that a similar phenomenon happens
in two other areas where we can find a natural analogy with colors: fuzzy con-
trol and quantum computing. Since the analogy with fuzzy control has already led
to efficient applications, we hope that the newly discovered analogy with quantum
computing will also lead to computational speedup.
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1 Formulation of the Problem

What is so special about magenta. It is well known that every color can be repre-
sented as a combination of three colors: red (R), green (G), and blue (B); see, e.g.,
[10]. In particular, by combining two of these colors, we get the following:

• a combination of red and green leads to yellow;
• a combination of red and blue leads to magenta; and
• a combination of green and blue leads to cyan.

Both yellow and cyan are real colors, they correspond to certain wavelengths. How-
ever, magenta is not a real color – in the sense that no wavelength corresponds to
magenta. The only way to get a perception of the magenta color is to combine read
and blue. But why is magenta different?

What we do in this paper. In Section 2 of this paper, we provide a possible simple
explanation of why magenta is different. In Sections 3 and 4, we show that this
explanation is related to fuzzy control and to quantum computing.

2 A possible simple explanation of why magenta is different

In terms of frequencies, red corresponds to the lowest frequency, blue to the high-
est, and green is in between. From this viewpoint, green is between red and blue.
Symbolically, we can described this situation as follows:

R G B

When we combine two neighboring colors, we get a connected range of colors:

R G B

R G B

However, when we combine two non-neighboring colors – red and blue – we get
a disconnected range of colors:

R G B
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The problem with this is that when we perceive objects, we naturally interpolate;
see, e.g., [10]. For example, if we see four corner of a square, we naturally interpo-
late it to a square. From this viewpoint, if we see two colors, we naturally interpolate
and conclude that all intermediate colors should be there as well. But if all colors
were present, we would get a white color, and combination of red and blue does not
make a white. As a result, this non-neighboring combination is treated differently
from the two other cases – cases in which we combine neighboring colors.

3 Relation to fuzzy control

What is fuzzy control: a very brief reminder. When experts describe their
decision-making process, they rarely use exact numbers – all the rules using ex-
act numbers have already been incorporated into automatic control, there is no need
to use experts for that. What experts use in their explanations is natural-language
words. For example, when we control the car direction, we can go straight, turn
left, or turn right – and we can also add gradations: turn a little bit to the left,
turn somewhat to the right, etc. Techniques for translating this natural-language-
based knowledge into an exact control strategy are known as fuzzy control; see, e.g.,
[1, 4, 6, 7, 9, 18].

The simplest case. Let us consider the simplest case when we have only three rec-
ommendations: straight (S), left (L), and right (R). Naturally, straight is between left
and right, which can be described symbolically as follows:

L S R

In this case, we have a direct analogy with three basic colors, so that the inter-
mediate recommendation – of going straight – corresponds to the intermediate basic
color green (which, by the way, makes perfect sense from the viewpoint of traffic
lights :-).

In this case, a resulting recommendation may be either one of these three options,
or several of them. As a result, we get some recommended range – which is a union
of ranges recommended by an expert (or experts). If we combine all three ranges –
or if we combine two neighboring ranges – we get a connected set:

L S R

L S R
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L S R

However, if we combine two disconnected ranges, we get a disconnected union:

L S R

To translate expert recommendations into an automatic control, we need to trans-
form this union into a single number. A connected range – interval [x,x] – does not
change if we invert into with respect to the midpoint

x̃ def
=

x+ x
2

,

i.e., if we apply a transformation x 7→ 2x̃− x. Thus, it make sense to require that the
recommended control value xr should also be invariant with respect to this transfor-
mation, i.e., that we should have xr = 2x̃− xr. This leads to xr = x̃, a value which is
well inside the recommended range.

But what happens if we have a disjoint set of recommendations, i.e., when we
combine recommendations corresponding to colors red and blue? In the simplest
case, assuming that all three intervals have the same width w, we get the union
[x0,x0+w]∪ [x0+2w,w0+3w]. This set is also invariant with respect to an inversion:
namely, an inversion with respect to the point x̃ = x0 + 1.5w: x 7→ 2x̃− x. Thus, it
seems reasonable to select a recommendation xr which is also invariant with respect
to this transformation, i.e., the value xr = x̃ = x0 +1.5w. However, in contrast to the
connected case, this value is not in the recommended range.

This is a real problem, not just a mathematical exercise. At first glance, this may
seem like a mathematical mumbo-jumbo, but actually, it is an important practical
problem. Suppose that you are driving on an empty road and you see a rock (or
some other small obstacle) right ahead. Then, it make sense to veer a little bit to the
left and it makes equal sense to veer a little bit to the right. So, we get the disjoint
recommended set. But what naively applied fuzzy control recommends in this case
is – exactly as we described earlier – going straight ahead, which makes no sense in
this case.

The difference between combining neighboring and non-neighboring recom-
mendations is similar to the case of colors. So, for fuzzy control, the case when
we combine non-neighboring recommendations requires a different approach than
simpler cases – cases in which we combine neighboring recommendations. From
this viewpoint, the fuzzy control situation is similar to the situation involving col-
ors.

The relation between fuzzy control and basic colors is well known and well
used. While the above relation between fuzzy control and colors may be new, in
general, the relation between fuzzy control and colors is rather well known and well
studies. It has led to successful applications in both directions:
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• fuzzy logic has been used in optics (see, e.g., [3]), and
• color optical devices have been proposed to perform computations related to

fuzzy control; see, e.g., [5, 12, 13, 14, 15, 16, 17] and references therein.

4 Relation to quantum computing

The very basics of quantum computing. The main idea behind quantum comput-
ing (see, e.g., [8]) is that using quantum effects (see, e.g., [2, 11]) enables us to
speed computations.

One of the specific features of quantum physics is that for each object, in addition
to its usual (“classical”) states s1, . . . , sk – which in quantum physics are denoted by
|s1⟩, . . . , |sk⟩, we can also have superpositions of these states, i.e., states of the type
c1 · |s1⟩+ . . .+ ck · |sk⟩, where c1, . . . ,ck are complex numbers for which the sum of
the squares of their absolute values is equal to 1:

|c1|2 + . . .+ |ck|2 = 1.

In particular, for a bit – the main computing unit that can be in two states 0 and 1,
its quantum analog – known as qubit – can be in any state c0 · |0⟩+ c1 · |1⟩, where
|c0|2 + |c1|2 = 1.

Another important feature of quantum states is that two expressions that differ
only by a constant whose absolute value is 1 actually correspond to the same state.
For example, the expressions |0⟩, −|0⟩, i · |0⟩ (and, in general,

exp(i ·a) · |0⟩,

where a is any real number) describe the same classical state 0.

So how can we describe a general state of a qubit. Any complex number c can
be represented as ρ · exp(i ·a) for some real numbers ρ ≥ 0 and a. In these terms, a
general state of a qubit can be described as

ρ0 · exp(i ·a0) · |0⟩+ρ1 · exp(i ·a1)|1⟩.

Since multiplication by exp(−i · a0) does not change the state, the same state can

be represented as ρ0 · |0⟩+ c′1 · |1⟩, where we denoted c′1
def
= exp(−i · a0) · c1. This

way, we get a unique representation of the state of a qubit, since the only way to go
from a positive real number ρ1 to another positive real number by multiplying it by
a number whose absolute value is equal to 1 is to multiply it by 1 – i.e., to keep it
unchanged.

In this representation, the coefficient at |0⟩ is a real number, while a coefficient c′1
at |1⟩ is, in general, a complex number, i.e., an expression of the type c′1 = a+b · i
for some real numbers a and b. In these terms, a general state of a qubit can be
represented as
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ρ · |0⟩+(a+b · i) · |1⟩.

This way, we get a 3-D representation of qubits. The above expression shows that
any state of a qubit can be represented as a real-valued linear combination of the
following three basic states: |0⟩, |1⟩, and i · |1⟩. From this viewpoint, it is somewhat
similar to the basis of three colors in the color space.

What is a natural order between the three basic states? The three basic states
correspond to coefficients at |1⟩ equal to 0, 1, and i, see below:

6

-
�@ �@

�@

0 1

i

The shortest path that connects all three values has 0 in between 1 and i. Thus,
it is reasonable to conclude that the state |0⟩ – that corresponds to a 0 coefficient
at |1⟩ – is in between two other states, i.e., in between states |1⟩ and i · |1⟩. From
the viewpoint of the analogy between the three basis quantum states and the three
basic colors, the state |0⟩ corresponds to the basic color green (G), which is also in
between the two other basic colors: red (R) and blue (B).

What if we combine two basic quantum states? If we combine basic states |0⟩
and |1⟩, then we get generic states of the type ρ · |0⟩+ a · |1⟩, for real numbers
ρ > 0 and a. To get a legitimate quantum state, we need to make sure that the
sum of the squares of the coefficients is 1, i.e., that ρ2 + a2 = 1. One can easily
check that all resulting states are different, i.e., that we get a 1-dimensional family
of different qubit states – which are, by the way, exactly the states used in most
quantum algorithms [8].

Similarly, if we combine basic states |0⟩ and i · |1⟩, then we get generic states of
the type ρ · |0⟩+b · i · |1⟩, for real numbers ρ > 0 and b. To get a legitimate quantum
state, we need to make sure that the sum of the squares of the coefficients is 1, i.e.,
that ρ2 +b2 = 1. One can easily check that in this case, all resulting states are also
different, i.e., that we also get a 1-dimensional family of different qubit states.

So, if general, if we combine the state corresponding to green with a state cor-
responding to another basic color, we get, as expected, 1-D families of combined
states.
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However, interestingly, if we combine the basic states |1⟩ and i · |1⟩ – i.e., states
corresponding to basic colors red and blue – then all we get are the states of the type
(a+b · i) · |1⟩, which are all equivalent to the original state |1⟩.

So, in quantum computing case too, the result of combining states corresponding
to colors red and blue is very different from the results of combining states corre-
sponding to two other colors.

5 Conclusions

In this paper, we explain why magenta – a combination of non-neighboring red and
blue basic colors – is different from all other color combinations. We also show
that both in fuzzy control and in quantum computing, a combination of states cor-
responding to non-neighboring basic colors is also different from a combination of
two other states.

The analogy between colors and fuzzy degrees is already known – and it has led
to the ideas of using colors in fuzzy computations. The fact that there is a similar
analogy between color and quantum computing makes us conjecture that this can
also be useful in computations. In particular, since most quantum algorithms now
only use states with real-valued coefficients – that correspond to the two of three
basic colors – we conjecture that using imaginary coefficients may lead to further
speed-up of quantum computing.
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