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Abstract

Purpose: When several participants, working together, gained

some amount of money, what is the fair way to distribute this amount

between them? This is the problem that the future Nobelist Lloyd

Shapley was working on when he proposed what is now called the

Shapley value – a division uniquely determined by natural fairness

assumptions. However, this solutions is not universal: it assumes

that all participants are equal – in particular, that they have equal

productivity. In practice, people have different productivity levels, and

these productivity levels can differ a lot: e.g., some software engineers

are several times more productive than others. It is desirable to take

this difference in productivity into account.

Design/methodology/approach: Shapley value is based on an

axiomatic approach: it is uniquely determined by the appropriate fair-

ness assumptions. To generalize Shapley value to the case of different

productivity, we modified these assumptions appropriately, and ana-

lyzed what can be derived from these modified assumptions.

Findings: We prove that there is a unique division scheme that

satisfies all the resulting assumptions. This scheme is thus a gen-

eralization of Shapley value to this more general and more realistic

situation, when different participants have different productivity.

Originality/value: Both the formulation of the problem and the

result are new. The resulting division scheme can be used to more
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adequately distribute the common gains – by explicitly taking into

account that different participants have, in general, different produc-

tivity.

Keywords: Shapley value, Fair distribution, Difference in pro-

ductivity, Axiomatic approach.

1 Formulation of the problem

A simple motivating example. Suppose that three people came up to-

gether with a code that they sold to a major software company for 1 million

US dollars. They worked all together, so without all three of them, this un-

finished code would be worth nothing. Suppose also that the productivity of

Person 1 is twice higher than the productivity of each of his two colleagues.

In this situation, what is a fair way to distribute the money between these

three persons?

Fair division: a problem. The above simple example is a particular case

of the general problem of fair division. Let us describe this general problem

in precise terms.

Let us assume that a group Nn
def
= {1, . . . , n} of n people jointly gets some

benefit v(Nn). What is the fair way to distribute this benefit between the

participants, i.e., to assign values φ1, . . . , φn whose sum is v(Nn)?

What do we need to know to make a fair division. To make a fair

distribution, it is important to know what is the contribution of each partic-

ipant. This can be described by providing, for each subset S ⊆ N , a value

v(S) that people from S would have gained if they acted on their own, with-

out help of others. So, we get a function S 7→ v(S) that characterizes the

situation.

Shapley value. A Nobelist Lloyd Shapley found out that under reasonable

conditions, there is only one way φi(v) to assign the distribution to each such

function v(S); see, e.g., (Shapley, 1951), (Shapley, 1953), (Roth, 1988), (Luce

and Raiffa, 1989), (Myerson, 1997), and (Owen, 2013). This distribution has
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many equivalent forms, In this paper, we use the following form

φi(v) =
∑
S:i∈S

t(S)

|S|
, (1)

where |S| denotes the number of elements in the set S and

t(S)
def
=

∑
R⊆S

(−1)|S|−|R| · v(R). (2)

Comment. It is worth mentioning that the transformation (2) is well-known:

� in random set theory (see, e.g., (Molchanov, 2017) and (Nguyen, 2006)),

where it is used to transform the cumulative distribution function into

the corresponding probability density function, and

� in Dempster-Shafer theory (see, e.g., (Shafer 1976), (Nguyen, 2006)),

where it is used to transform the belief function into the corresponding

mass function.

What are the requirements behind Shapley value. Shapley’s first

condition is symmetry: if two participants i and j contribute equally, i.e., if

the values v(S) do not change when we swap i and j, then these participants

should get equal amounts: φi(v) = φj(v).

Shapley’s second condition is that if a person i is not contributing, i.e., if

v(S ∪ {i}) = v(S) for all S, then we should have φi(v) = 0.

Shapley’s third condition is additivity: if we have two situations u(S) and

v(S), then we can:

� either consider them separately

� or view them as a single situation with gain w(S) = u(S) + v(S).

The outcome should not depend on how we view this, so we should have

φi(w) = φi(u) + φi(v).

Comment. In this paper, we will only deal with economic applications of

Shapley value. It should be mentioned that Shapley value is now also actively
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used in machine learning, to find the importance φi(v) of each of n features

based on the effectiveness v(S) of solving the problem when we only use

features from the set S.

Why go beyond Shapley value. At first glance, the division provided

by the Shapley value sounds reasonable – and this division has been indeed

successfully applied to many practical problems. We will show, however,

that this division is not always reasonable and fair. To show this, let us

go back to the simple example with which we started this paper. In this

example, the three persons worked all together, so without all three of them,

this unfinished code would be worth nothing. Thus, here v({1, 2, 3}) = 1

while v(S) = 0 for all proper subsets of the set {1, 2, 3}.
Let us analyze what happens if we apply Shapley value to this situation.

In this case, t({1, 2, 3}=1 and t(S) = 0 for all other subsets S ⊆ {1, 2, 3}.
Thus, the Shapley value formula leads to

φ1 = φ2 = φ3 =
t({1, 2, 3})

3
=

1

3
.

So, each of the three persons would receive exactly one third of a million

– which is not fair, since Person 1 did twice more work than Person 2 or

Person 3.

The reason why we got this unfair division is that one of the requirements

on which Shapley’s value is based is the requirement of symmetry. In this

example, the function v(S) is invariant with respect to all possible permuta-

tions – and, as a result, the division is also invariant under each permutation,

i.e., all three persons get the same amount.

So, this unfairness was caused by the fact that in the Shapley value set-

ting, we only take into account the function v(S), and we do not take into

account the additional information – that these three persons have different

productivity. It is therefore desirable to take productivity pi of each par-

ticipant into account. Productivity can be measured in the usual way – by

the amount pi > 0 of the work that Person i can perform during a given

time duration – e.g., how many lines of code the person can produce during

an 8-hour working day. In other words, we need to determine the values φi
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based on both v(S) and the values p = (p1, p2, . . .): φi(v, p).

Comment. In game theory, descriptions in which we only take into account

the function v(S) are known as coalitional games. What we are suggesting is

to add additional information to the description of the situation. Situations

when we supplement the function v(S) with additional information are known

as coalitional games with prior additional information.

What we do in this paper. In this paper, we show how to adjust the

requirement behind the Shapley value so that they would lead to a unique

determination of the desired distributions φi(v, p).

2 What we propose

Natural first requirement. If i’s productivity is twice larger than j’s, this

means that the company can replace i with two less productive workers and

get the same result. After this replacement, all participants have the same

productivity, so to this replaced situation, we can apply symmetry and get

Shapley value – and then assign to i the sum of bonuses that Shapley value

recommends for his/her two replacements.

Similarly, if we could replace person i with 3 or more workers and keep

the same productivity, it makes sense to require that the amount given to

the person i should be equal to the sum of amounts given to these workers.

It turns out that it is sufficient to require this property only for situation

which are simple – in some precise sense described below.

Natural second requirement. If the productivity changes a little bit, the

resulting distribution should also change only a little bit. In mathematical

terms, this means that the dependence of distribution on productivity should

be continuous.

Main result. If impose these two additional requirements, then we get the

following result.

Definition 1. By a situation, we mean a triple (n, v, p), where:

� n is a positive integer,
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� v is a function that assigns a value v(S) ≥ 0 to each subset S ⊆ Nn
def
=

{1, . . . , n}, and for which R ⊆ S implies v(R) ≤ v(S), and

� p = (p1, . . . , pn) is a tuple of n positive numbers.

Definition 2. We say that the situation (n, v, p) is simple if for some subset

R ⊆ Nn, we have v(S) = 0 if R ̸⊆ S and v(S) = v(R) otherwise. We will

call this set R basic.

Definition 3.

� By a division strategy, we mean a function φ(n, v, p) that assigns, to

each situation (n, v, p), an n-tuple of real numbers φi(n, v, p), 1 ≤ i ≤
n, for which φ1(n, v, p) + . . .+ φn(n, v, p) = v(Nn).

� We say that a division strategy is symmetric if for every situation in

which swapping i and j does not change v and p, i.e., in which pi = pj

and v(S ∪ {i}) = v(S ∪ {j}) for all sets S that contain neither i nor j,

we have φi(n, v, p) = φj(n, v, p).

� We say that a division strategy has the null-player property if for each

situation and for each player i for which v(S ∪ {i}) = v(S) for all S,

we get φi(n, v, p) = 0.

� We say that a division strategy is additive if for all u and v, we have

φi(n, u+ v, p) = φi(n, u, p) + φi(n, v, p) for all i.

� We say that a division strategy is continuous if φ(n, v, p) ia a continu-

ous function of p.

� We say that a division strategy is productivity-based if for every simple

situation with a basic set R, if we combine participants from a subset

R′ ⊆ R into a single participant i0 with productivity equal to the sum of

productivities of all members of R′, then in this new situation (n′, v′, p′),

φi0(n
′, v′, p′) =

∑
i∈R′

φi(n, v, p).
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Proposition. There exists one and only one division strategy which is sym-

metric, has null-player property, is additive, continuous, and productivity-

based. In this strategy,

φ(n, v, p) = pi ·
∑
S:i∈S

t(S)

p(S)
, (3)

where we denoted

p(S)
def
=

∑
i∈S

pi. (4)

Comments.

� The proof of this proposition is given in the next section.

� One can easily see that if all participants have the same productivity,

i.e., if p1 = . . . = pn, then the formula (3) becomes the usual Shapley

value formula (1).

Let us apply this result to our simple example. Let us see what

happens if we apply this result to our simple example, where three persons –

one of which has twice higher productivity than each of the two others – need

to divide one million dollars that they got from the major software company

for their code. If we simply apply Shapley value to this situation, then each

of them would receive exactly 1/3 of a million, which is not fair since Person

1 did twice more work than Person 2.

Let us analyze what happens if we apply the newly proposed scheme – the

scheme that takes difference in productivity into account – to this example.

Here, if we take the productivity of Persons 2 and 3 as the measuring unit,

i.e., take p2 = p3 = 1, then the productivity of Person 1 is twice larger:

p1 = 2. Here, p(S) = p1 + p2 + p3 = 2 + 1 + 1 = 4. So, according to the

formula (3), we have

φ1 = p1 ·
t({1, 2, 3})
p({1, 2, 3})

= 2 · 1
4
= 0.5,
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φ2 = p2 ·
t({1, 2, 3})
p({1, 2, 3})

= 1 · 1
4
= 0.25, and

φ3 = p3 ·
t({1, 2, 3})
p({1, 2, 3})

= 1 · 1
4
= 0.25.

So, in the new scheme, Person 1 will get twice more than each of 2 and 3:

Person 1 will get $500,000, while Persons 2 and 3 will get $250,000 each.

A slightly more complex example. The above example is simple, the

resulting fair division can be proposed without any Shapley-like formulas.

The main purpose of this simple example was to show that there is a problem

with the naive application of Shapley value — since the Shapley value does

not take into account difference in productivity.

Our new method allow to deal with more complex situations, when we

have both non-zero values of v(S) for different sets S, and information about

productivity. Let us illustrate this method on a slightly more complex ex-

ample.

Let us assume that in addition to Persons 1, 2, and 3 designing a software

that is worth $1 million, a somewhat different group – Persons 1, 2, and 4

– developed a related software that is also worth $1 million. Here, Person 1

still has twice larger productivity than Persons 2 and 3, and Person 4 has the

same productivity as Persons 2 and 3. These two softwares supplement each

other, so when presented together they are worth more – when presented as

a package, they are worth $2.5 million. What is then a fair way to divide

$2.5 million between the four persons?

In this case, the function v(S) has the following form: v({1, 2, 3}) =

v({1, 2, 4}) = 1, v({1, 2, 3, 4}) = 2.5, and v(S) = 0 for all other sets

S ⊆ {1, 2, 3, 4}. One can check that in this case, we have t({1, 2, 3}) =

t({1, 2, 4}) = 1, t({1, 2, 3, 4}) = 0.5, and t(S) = 0 for all other sets

S ⊆ {1, 2, 3, 4}.
Thus, in the division based on the Shapley value, each of the Persons 1

and 2 gets

φ1 = φ2 =
t({1, 2, 3})

3
+

t({1, 2, 4})
3

+
t({1, 2, 3, 4})

4
=
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1

3
+

1

3
+

0.5

4
=

2

3
+

1

8
=

19

24
≈ 0.79,

while each of the Persons 3 and 4 gets:

φ3 =
t({1, 2, 3})

3
+

t({1, 2, 3, 4})
4

=
1

3
+

0.5

4
=

1

3
+

1

8
=

11

24
≈ 0.46 and

φ4 =
t({1, 2, 4})

3
+

t({1, 2, 3, 4})
4

=
1

3
+

0.5

4
=

1

3
+

1

8
=

11

24
≈ 0.46.

This is not fair, since Person 1 worked twice harder than Person 2, but they

get the same amount.

In the new approach, with p1 = 2 and p2 = p3 = p4, we have p({1, 2, 3}) =
p1 + p2 + p3 = 2+ 1+ 1 = 4, p({1, 2, 4}) = p1 + p2 + p4 = 2+ 1+ 1 = 4, and

p({1, 2, 3, 4}) = p1 + p2 + p3 + p4 = 2 + 1 + 1 + 1 = 5. Thus, we have

φ1 = p1 ·
(
t({1, 2, 3})
p({1, 2, 3})

+
t({1, 2, 4})
p({1, 2, 4})

+
t({1, 2, 3, 4})
p({1, 2, 3, 4})

)
=

2 ·
(
1

4
+

1

4
+

0.5

5

)
= 2 · (0.25 + 0.25 + 0.1) = 1.2,

φ2 = p2 ·
(
t({1, 2, 3})
p({1, 2, 3})

+
t({1, 2, 4})
p({1, 2, 4})

+
t({1, 2, 3, 4})
p({1, 2, 3, 4})

)
=

1 ·
(
1

4
+

1

4
+

0.5

5

)
= 1 · (0.25 + 0.25 + 0.1) = 0.6,

φ3 = p3 ·
(
t({1, 2, 3})
p({1, 2, 3})

+
t({1, 2, 3, 4})
p({1, 2, 3, 4})

)
=

1 ·
(
1

4
+

0.5

5

)
= 1 · (0.25 + 0.1) = 0.35, and

φ4 = p4 ·
(
t({1, 2, 4})
p({1, 2, 4})

+
t({1, 2, 3, 4})
p({1, 2, 3, 4})

)
=

1 ·
(
1

4
+

0.5

5

)
= 1 · (0.25 + 0.1) = 0.35.

Here, Person 1 gets twice more than Person 2 – in agreement with the fact

that Person 1 did twice as much work as Person 2.
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3 Proof

1◦. It is relatively easy to prove that the strategy (3) satisfied all the above

properties. So, to complete the proof, it is sufficient to prove that if a division

strategy satisfies all the above properties, then it has the form (3).

2◦. Let us assume that a division strategy satisfies all the above properties.

Let us first show that for each simple situation (n, v, p) with a basic set R:

� for all i ̸∈ R, we have φi(n, v, p) = 0, and

� for all i ∈ R, we have

φi(n, v, p) = pi ·
v(R)

p(R)
. (5)

Let us prove these two formulas one by one.

2.1◦. From the null-player property, it follows that φi(n, v, p) = 0 for all

i ̸∈ R – since these participants do not add anything to any value v(S).

2.2◦. Let us first prove the formula (5) for the cases when all the productivity

values are rational numbers, i.e., ratios of natural numbers. In this case, we

can bring all these rational numbers to a common denomination d, so we

have

pi =
ni

d

for some integers ni. In this case, we can replace each participant i with

ni participants with productivity 1/d. After this substitution, we get a new

situation with
∑

nj participants with the same productivity. So, due to

symmetry, each of them will get the exact same share, i.e., the value

v(N)∑
j

nj

=
v(R)∑
j

nj

.

Due to the fact the division is productivity-based, each participants i in the
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original situation gets ni times more, i.e., gets the value

φ(n, v, p) = ni ·
v(R)∑
j

nj

.

We can divide both the numerator and the denominator of this expression

by d, this will not change the resulting values. So, we get

φ(n, v, p) =
ni

d
· v(R)∑

j

nj

d

,

i.e.,

φ(n, v, p) = pi ·
v(R)∑
j

pj
.

By definition of p(R), this means that

φ(n, v, p) = pi ·
v(R)

p(R)
.

We have proved the formula (5) for rational productivity values pi. Any

real-valued productivities can be approximated, with any given accuracy, by

rational numbers. Thus, in the limit when these rational approximations

tend to the original values pi, we conclude – dut to continuity – that the

formula (5) holds for real values as well.

3◦. It is known that for every function v, we have

v(S) =
∑
R⊆S

t(R).

Some of the value t(R) may be negative. If we move these values to the

left-hand side, we get the following equality

v(S) +
∑

R⊆S:t(R)<0

|t(R)| =
∑

R⊆S:t(R)≥0

t(R).

For every set R, let us consider a simple situation vR with this basic set R
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and vR(R) = |t(R)|, then we have

v(S) +
∑

R⊆S:t(R)<0

vR(S) =
∑

R⊆S:t(R)≥0

vR(S).

Thus, by additivity,

φi(n, v, p) +
∑

R:i∈R& t(R)<0

φi(n, vR, p) =
∑

R:i∈R& t(R)≥0

φi(n, vR, p).

From Part 2 of this proof, we know the values φ(n, vR, p) for all simple

situations. Thus, we get

φi(n, v, p) +
∑

R:i∈R& t(R)<0

pi ·
|t(R)|
p(R)

=
∑

R:i∈R& t(R)≥0

pi ·
t(R)

p(R)
.

If we move the sum from the left-hand side into the right-hand side, we get

the formula

φi(n, v, p) =
∑
R:i∈R

pi ·
t(R)

p(R)
.

If we have the common factor out of the sum, we get the desired formula (3).

The proposition is proven.

4 Conclusions

In many practical situations, after a group of people has jointly performed

an important task, it is necessary to fairly distribute the resulting benefits

between them. Such situations were motivations for Nobelist Lloyd Shapley,

who showed that under some reasonable conditions, there is only one fair

way to distribute these benefits – which we now call Shapley value. Shapley

value is based on the available information about contribution of subgroups

of participants – gauged by how much each subgroup could gain if it acted

on its own, without help of others.

In this paper, we show that while Shapley value has been successfully

applied to many economic and financial situations, there are cases when it
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does not lead to a fair division. The reason for this is that Shapley value

does not explicitly take into account that participants often have different

productivity. In some cases, this difference is taken into account implicitly

– since different productivity levels affect the subgroup gains. However, in

some cases, subgroup gains are not affected by this difference, and it leads

to unfair outcomes – when more productive participants get paid the same

amount as less productive ones. To avoid such situations, we show how to

take productivities into account. Specifically, we show that, in this case,

a natural generalization of Shapley’s conditions also leads to a unique way

to distribute benefits. The resulting formulas are illustrated on two simple

realistic examples.
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