All We (and LLMs) Need Is Fuzzy: An Argument
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Abstract

Large Language Models (LLMs) like ChatGPT have spectacular suc-
cesses — but they also have surprising failures that an average person
with common sense could easily avoid. It is therefore desirable to in-
corporate the imprecise (“fuzzy”) common sense into LLMs. A natural
question is: to what extent will this help? This way, we may avoid a few
simple mistakes, but will it significantly improve the LLMs’ performance?
What portion of the gap between current LLMs and ideal perfect Al-based
agents can be, in principle, covered by using fuzzy techniques? Judging
by the fact that few researchers working on LLMs (and on deep learning
in general) try fuzzy methods shows that most these researchers do not
believe that the use of fuzzy techniques will significantly improve LLMs’
performance. Contrary to this pessimistic viewpoint, our analysis shows
that potentially, fuzzy techniques can cover all the above gap — or at least
a significant portion of this gap. In this sense, indeed, all LLMs need to
become perfect is fuzzy techniques.

1 Formulation of the problem

LLMs are great but not perfect. Modern AI techniques, in particular,
Large Language Models (LLMs), have achieved so many spectacular successes
that many of us have become in awe of them — and our only problem seems to
be that they are so smart that they can take over us. In doing this, we forget
that while, in general, ChatGPT and LLMs produce impressive results, once in
a while they produce results that we humans can easily see as wrong. This is
not just complex LLMs:

e several crashes of Al-controlled self-driving cars occurred in traffic situa-
tions in which even a not-very-experienced human driver would know how
to avoid;



e one of the most spectacular successes of deep-learning-based Al — winning
over a human world champion in Go — was recently kind of overturned by
a not-very-highly-ranked Go player who beat Al by using rather simple
moves, moves that most human players would know how to react to.

So what is missing? In both examples, what is missing is not the ability to
deal with complex situations, what is missing is simple common sense. So, to
improve the situation, it makes sense to take common sense into account.

A similar challenge happened 60 years ago. How can we take common
sense into account? This question was first asked, in the 1960s, by Lotfi Zadeh,
one of the leading control experts of that time, who encountered another chal-
lenge: that optimized automatic controllers often performed worse than human
controllers. The answer to this challenge seemed to be straightforward: incor-
porate the knowledge of expert controllers into the automatic control systems.
However, it was not clear how to follow this recommendation. Many expert
controllers were willing to share their strategies, but the problem was that they
did not describe these strategies in computer-understandable precise form, they
could inly describe their strategies by using imprecise (“fuzzy”) words from
natural language like “small”.

To overcome this challenge, Zadeh came up with a technique — that he called
fuzzy — for transforming this natural-language description into precise computer-
understandable control strategies. This technique indeed led to many successes
(see, e.g., [1, 2, 3, 5, 6, 10]) — although, of course, it is not a panacea.

So maybe fuzzy technique can help here as well? So a natural idea is
to try to use fuzzy techniques to help LLMs common sense — o, to be more
cautious, to acquire more of common sense.

But will this be enough? Probably fuzzy techniques will lead to some suc-
cesses, but is using these techniques the right research direction? Very few
people in the current Al community follow this path. THis means that the vast
majority of them do not believe that using fuzzy techniques will drastically im-
prove the situation. And their reasoning seems to make sense: after all, fuzzy
successes are mainly in the past, these successes often pale in comparison with
successes of modern deep learning techniques.

We arrive at the following research question. In view of the widely
spread pessimism about fuzzy, to convince researchers to try fuzzy techniques,
it is desirable to estimate how much fuzzy can help.

What we do in this paper. In this paper, we use common sense (pun
intended) to provide such an estimate — and our estimate shows that fuzzy
techniques have a potential to (almost) close the gap between current LLMs
and ideal future common-sense-using Al-based agents.



2 How we solve this problem

What we plan to do in this paper. Our main idea is that LLMs use only
crisp — precise — part of the information: namely, they use the facts. The LLMs
do not use fuzzy (imprecise) expert knowledge. In order to show that fuzzy
techniques have a potential to close the current gap, we need:

e first, to gauge the size of this gap — i.e., to analyze what portion of infor-
mation is missing, and

e second, to gauge what portion of information is fuzzy.

To perform the second task, we need to recall the main ideas behind fuzzy
techniques. Once both tasks are performed, we will be able to compare the
portions and thus, to estimate to what extend fuzzy techniques can help.

How far are LLMs from common sense? In order to show that fuzzy
techniques have a potential to close this gap, we need to gauge the size of this
gap. We want a general estimate, applicable for all kinds of LLMs and Als, not
just one specific model. Because of this desire, we selected the paper [9] that
analyzed several different LLMs — on the example of predicting prices of gold
and other precious metals.

According to this paper, the correlation between these predictions and real
data is about 20% for all the LLMs. One may hope that if we combine different
LLMs, the gap will decrease, so that some of the LLMs will pick up where others
fail. This would have been the case if the results of these LLMs were indepen-
dent — then by combining them, we would indeed get more accurate results.
Unfortunately, these hopes are in vain: LLMs’ results are highly correlated: the
correlation between every two of them is about 70-80%.

So, the 100 — 20 = 80% is not just a gap of each LLM, it is a joint gap of all
LLMs.

Let us recall the main ideas behind fuzzy techniques. To analyze what
part of information is fuzzy, let us briefly recall how fuzzy techniques work.
In these techniques, for each imprecise property like “z is small”, with each
possible value of the quantity z, we associate a degree p(x) from the interval
[0, 1] to which this value x satisfies the given property (e.g., to which x is small).
Here:

e the value 1 means that we are absolutely sure that = has the given property,

e the value 0 means that we are absolutely sure that x does not have the
given property, and

e values between 0 and 1 correspond to intermediate degrees of confidence.

The resulting function p(x) is known as a membership function, or, alternatively,
as a fuzzy set.



It is well known that to process fuzzy data, it is convenient to use an alter-
native representation of fuzzy sets — via so-called a-cuts, i.e., sets

x(a) € {2+ p(z) > a}
def

for o > 0 and x(0) = {z : u(z) > 0} for a = 0.

It is known that once we have all the a-cuts, we can uniquely reconstruct
the original membership function.

The meaning of a-cuts is as follows: For each « and for each = ¢ x(«), our
degree of confidence that this z is possible is smaller than «. Thus, our degree
of confidence that this = is not possible is larger than 1 — «. Thus, with degree
of confidence 1 — «, we are sure that all possible values x are located in the
corresponding a-cut x(«).

Let us estimate which portion of information is stored in non-crisp
form. From the purely theoretical viewpoint, to reconstruct the membership
function, we need to know a-cuts corresponding to all infinitely many values «
from the interval [0,1]. The reason for this need is that in principle, a degree
p(z) can be any value from the interval [0, 1].

However, it is not possible for an expert to meaningfully distinguish between,
e.g., degree 0.8 and degree 0.81. According to the psychological seven-plus-
minus-two law (see, e.g., [4, 7]), a human being can meaningly distinguish only
between 7+ 2 different values — i.e., at best, between 7+ 2 = 9 values. We want
possible values to include 0 (absolutely false) and 1 (absolutely true). This
leaves us with 7 intermediate values. For simplicity, it makes sense to assume
that these intermediate values are uniformly spread on the interval [0, 1], i.e.,
that they have the form 0, 1/8, 2/8, ..., 7/8, and 1. We may have other values
of u(x), but these values are indistinguishable from these nine ones. So, without
losing any expert information, we can safely assume that all the values p(z) are
equal to one of these nine numbers.

For such membership functions, we do not need to know all infinitely many
a-cuts: it is sufficient to use a-cuts corresponding to the above nine values
a. Using the above general meaning of a-cuts, we can make the following
conclusions:

we are fully confident that the actual value is in x(0);

with confidence 7/8, we are sure that the actual value is in x(1/8);

with confidence 1 — i/8, we are sure that the actual value is in x(i/8);
o ...
So, in this sense, we have nine pieces of information:

e one piece with confidence 1 — this is the crisp (non-fuzzy) piece and



e eight fuzzy pieces with confidences, correspondingly, 7/8, 6/8, ..., and 0.

To get the amount of information contained in each piece, it makes sense to
multiply the average amount of knowledge in a corresponding statement by the
degree of confidence. For example, if our degree of confidence in a statement is
0, this means that we have no information at all.

Thus, the overall amount of information contained in all 9 pieces is propor-
tional to the sum

76 1 8+7+6+...4+14+0 1
44 -4...+=+0= — - (142+4...48) =
+tgtgtootgt < g (1+2+...+8)

1 8-(8+1) 9
s 2 a7 4%

while the amount of information contained in the crisp part is proportional to
1. Hence, the proportion of information contained in the fuzzy part is equal to

45-1

~ 0.78.
4.5

Conclusion. What is missing is approximately 80% of the information, and
what fuzzy can bring is about 78%. Taking into account that these are crude
estimates, we can reasonably conclude that fuzzy information can fill the gap
between current LLMs and the ideal Al-based agents — or at least fill in the
significant portion of the bill.

Remaining open question. Of course, the big question is how to incorporate
fuzzy knowledge into LLMs. We still do not know how to do it.

But the fact that we do not know how to do it does not mean that this paper
is useless. Our analysis — presented in this paper — shows that fuzzy knowledge
has a potential of filling the gap. So hopefully this will inspire more researchers
to work in this direction — the direction of analyzing how to incorporate impre-
cise (fuzzy) expert knowledge into the LLMs.
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