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Abstract

When making decisions, it is important to take into account high-
impact low-probability events. For such events, traditional probability-
based approach – which considers the product of the probability p that this
event happens and the probability P that a randomly selected building
will be destroyed – often underestimates risks. Available data has lead to
an empirical table that provides a more adequate risk estimate. Most of
the entries in this table correspond to the fuzzy-like formula min(p, P ).
This paper explains this empirical result. Specifically, it explains both the
effectiveness of the min formula – and also explains deviations from this
formula.

1 Formulation of the Problem

Need to deal with high-impact low-probability events. In many decision-
making situations, we need to take into account high-impact low-probability
events. For example:

� in civil engineering, we need to take into account the possibility of rare
strong earthquakes that could destroy the designed buildings;

� in information security, we need to take into account the low-probability
scenario in which the adversary can break through all our security barriers
and thus, inflict a high-impact damage, etc.
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How can we take such events into account?

Cannot we use the usual risk-based approach? At first glance, the so-
lution is straightforward. According to decision theory (see, e.g., [2, 3, 7, 10,
12, 13, 17]), in decision making, we should select the alternative for which the
expected utility is the largest – i.e., in this case, that the expected loss is the
smallest. The expected loss is equal to the product p · ℓ of:

� the event’s probability p and

� the corresponding loss ℓ.

So, this product should be the numerical measure that describes how we should
take such events into account.

This measure can be described in purely probabilistic terms. For example,
the earthquake’s damage ℓ to a city can be described by multiplying:

� the probability P that in this event, a randomly selected building will be
damaged, and

� the average amount of damage D to an affected building.

For ℓ = P · D, the expected loss p · ℓ takes the form p · P · D, and is, thus,
proportional to the product p · P of the two probabilities:

� the probability p that such an event will occur, and

� the probability P that this event will damage a randomly selected building.

The usual risk-based approach underestimates the risk. We want to
estimate the probability that the event occurred and that it damaged the ran-
domly selected building. The above product formula p · P is valid if these two
events are independent. However, for high-impact low-probability events, there
is often a correlation between these two events – which makes the product for-
mula not valid.

Let us explain this on the example of earthquakes. In California or Japan,
where reasonable-size earthquakes are frequent, everything is designed with this
in mind, so such earthquakes do not cause any major damage. In contrast,
in place like El Paso – where we live – earthquakes are very rare. As a result,
many buildings are not designed with such earthquakes in mind. So, if a similar-
strength earthquake happens in El Paso – and it will happen sometimes in the
next few hundred years – it will cause a huge damage. Statistical estimates
for P mainly take into account most frequent events – i.e., mostly events from
high-frequency zones line California. So, if we use these largely-California-based
estimates o estimate El Paso risks, we will be strongly underestimating the risk.

So what can we do: empirically successful way to take such events into
account. Statistical analysis of numerous high-impact low-probability events
was performed by researchers from the US National Institute of Standards and

2



Technology (NIST). The results of their analysis are summarized in the NIST
document [15]. Here is the main table from this document. In this table, VL
means very low, L means low, M means moderate, H mean high, and VH means
very high. For now, ignore the underlining – it is not from the original table, it
was done by us, and it will be explained later:

p \ P VL L M H VH

VL L L L L L
L VL L L L M
M VL L M M H
H VL L M H VH
VH VL L M H VH

With the exception of several entries from the first row and from last column
– entries that we underlines – all the entries fit the fuzzy-like formula min(p, P )
(see, e.g., [1, 6, 11, 14, 16, 20]) – as opposed to the above-mentioned probability-
like product formula.

But why? But why this empirical table has this particular form?
A naive answer is that in this case, naive fuzzy – with minimum – works

better than naive probability – with the product. In other words, paraphrasing
Orwell’s “Animal Farm”: fuzzy good, probability bad. But why is probability
bad for low-frequency events – while it works perfectly well for the cases when
the frequency is not low?

What we do in this paper. In this paper, we provide an explanation for the
above empirical table.

� First, we explain, in detail, the non-underlines part of the table.

� Then, we provide qualitative arguments explaining why underlined entries
in this table are different from minimum.

2 Our Explanation

What do we know about the desired probability of both events hap-
pening? The expected loss is equal to the damage D multiplied by the proba-
bility t that both events occur:

� that the low-probability event happens, and

� that this event causes a randomly selected building to be destroyed.

All we know is the probabilities p and P of these two events. We know that there
is a correlation between them, but we do not know the values of this correlation.
In this case, all we know about the probability t of both events happening is
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that this value must satisfy the following inequalities – first derived by Frechet
(see, e.g., [18]):

max(p+ P − 1, 0) ≤ t ≤ min(p, P ). (1)

We consider low-probability events, i.e., events for which p ≪ 1. So, unless
P ≈ 1 – which is the case of the last column of or table – we have p + P ≤ 1
and thus, max(p + P − 1, 0) = 0. In this case, the double inequality (1) takes
the following form:

0 ≤ t ≤ min(p, P ). (2)

What do we know about the expected loss and the expected utility?
Because of the bounds (2) on the probability t, the expected loss t ·D satisfies
the following inequality:

0 ≤ t ·D ≤ min(p, P ) ·D. (3)

So, for the expected utility u – which is equal to minus the expected loss – we
have the following inequality:

−min(p, P ) ≤ u ≤ 0. (4)

In other words, all we know about the expected utility u is that it is locates
somewhere on an interval [u, u], where

u
def
= −min(p, P ) ·D and u

def
= 0. (5)

How should be make a decision under this interval uncertainty? In
situations when we only know the expected utility, decision theory recommends
selected an alternative with the largest possible value of the following combina-
tion

αH · u+ (1− αH) · u, (6)

for some coefficient αH ∈ [0, 1]; see, e.g., [4, 7, 10]. This expression was first
derived by the economist Leo Hurwicz – who later got Nobel prize for his re-
search.

The coefficient αH is known as the optimism-pessimism parameter. The
name comes from the following:

� For αH = 1, the expression (6) turns into u. This means that the decision
maker only takes into account the best-case scenario and ignores all other
possibilities. This is the case of extreme optimism.

� For αH = 0, the expression (6) turns into u. This means that the decision
maker only takes into account the worse-case scenario and ignores all other
possibilities. This is the case of extreme pessimism.
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� Intermediate values αH mean that the decision maker takes different pos-
sible scenarios into account.

In particular, for the case when the interval is described by the formula (5), the
Hurwicz’s combination (6) takes the following form:

αH · 0 + (1− αH) · (−min(p, P ) ·D) = −min(p, P ) · (1− αH) ·D. (7)

So, the risk is proportional to the minimum min(p, P ) – which is exactly what
most entries in the above table say.

Remaining questions: why some entries differ from min? To complete
our explanations, it is necessary to explain why in two cases: in the first row
and in the last column – some entries differ from min(p, P ). Let us explain these
two cases one by one.

Why some entries in the first row are different from min? Humans
have a tendency to ignore low-probability events when making decisions. For
example, in many papers, events with probability less than 5% were considered
to be impossible – which led to so many irreproducible results that the American
Statistical Association (ASA) had to issue a special statement about it [19]. In
spite of this highly publicized statement, many practitioners continue to ignore
low-probability events when making decisions.

Because of this phenomenon, there is a risk that a low-probability event
will be ignored. To make sure that the event is not ignored, NIST researchers
recommend to increase the probability t for such cases, when p is very low. This
affects the first row of the above table – the row corresponding to events with
very low (VL) probability.

Why some entries in the last column are different from min? As men-
tioned in [5, 8, 9], humans have a tendency to underestimate high probabilities
when making decisions.

To counteract this subjective undersatimation, NIST researchers proposed
to increase recommended values t for the case when the probability of damage
is very high (VH) – which corresponds to the last column.
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