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Abstract. In many practical situations, a group of people needs to share
a success. What is the fair way to share this success? Nobelist John Nash
showed that under reasonable conditions, the group should select the al-
ternative for which the product of utility gains is the largest possible.
This solution makes perfect sense from the fuzzy-formalized common-
sense viewpoint: it maximizes the degree of con�dence that all partic-
ipants are happy. A natural question is: can we extend this result to
a di�erent class of situations, when a group of people needs to share
sacri�ces caused by a crisis? In this paper, we prove that in this case,
no solution satis�es the same set of conditions. We also explain how to
actually fairly distribute needed sacri�ces in the case of a crisis.

Keywords: fair division · fair distribution of sacri�ces · Nash's bargain-
ing solution · fuzzy techniques

1 Formulation of the Problem

How to share a success: a problem. Often, a group of people has an opportu-
nity to bene�t all its members. For example, family members get an inheritance
in which their late relative did not specify who gets what. In many such cases,
there are many possible alternative decisions. In some of these possible alterna-
tives, some of the participants bene�t more, in others, other participants bene�t
more. Which of these alternatives should we choose?

Known solution: Nash's bargaining solution and its relation to fuzzy.

This problem is well studied in decision theory; see, e.g., [2, 3, 5, 6, 10, 11, 14]. The
solution to this problem was provided by John Nash � who later won a Nobel
prize for his research; see, e.g., [6, 8, 9]. He showed that under some reasonable
requirements (that we will describe later), the group should select an alternative
for which the product U1 · U2 · . . . · Un of their utility gains Ui is the largest
possible. This solution is known as Nash's bargaining solution.

This solution has a natural interpretation in fuzzy logic; see, e.g., [1, 4, 7,
12, 13, 15]. Indeed, it is reasonable to make sure that everyone is as happy as
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possible, i.e., that the 1st person is happy and the 2nd person is happy, etc.
Thus, it makes sense to select an alternative for which our degree of con�dence
in the statement �the 1st person is happy and the 2nd person is happy, etc.� is the
largest possible. It is natural to use utility gain Ui as the measure of happiness. To
combine these degrees, we can use one of the most widely used �and�-operations:
algebraic product. Then, our degree of con�dence that an alternative makes
everyone happy is equal to the product of utilities � which is exactly what Nash's
bargaining solution is about.

But what if there is a crisis? Nash's bargaining solution is only applicable
in situations of success, when everyone gains. But sometimes, we encounter the
opposite situation � of a crisis, when everyone needs to sacri�ce. What is the
fair way to share a crisis?

What we do in this paper. In this paper, we analyze what is the fair way to
share a crisis, i.e., a situation when we need to decrease utilities.

Since our starting point is utility-based Nash's bargaining solution, we start
the paper with Section 2 that reminds the reader what is utility and how Nash's
bargaining solution is justi�ed. In Section 3, we show that a similar approach �
based on natural requirements � does not work for the case of a crisis. In Section
4, we provide a di�erent set of requirements and show that it enables us to come
up with an (almost) unique fair solution. For readers' convenience, all the proofs
are placed in special Section 5.

2 Utility and Nash's Bargaining Solution: A Brief

Reminder

What is utility. One of the main objectives of decision theory is to help people
make decisions in complex situations. In situations in which there is a very large
number of alternatives, it is not possible for a person to process all this data by
hand, we need to use computers.

Information about di�erent alternatives comes in di�erent formats, with
words, etc. Computers, however, are not very good in processing words, they
are much better in processing numbers � this is what they were originally de-
signed for. So, to e�ectively use computers, we need to describe all the available
information in numerical terms. In particular, we need to describe people's pref-
erences in numerical form. For this description, the notion of utility was invented.

This notion allows us to assign, to each alternative a, a number u(a) � called
its utility � so that a is preferable to b if and only if u(a) is larger than u(b).
To describe the utilities, we need to select two extreme alternatives, ideally not
realistic:

� a very bad alternative a− which is worse than any actual alternatives, and
� a very good alternative a+ which is better than any actual alternative.

Once these alternatives are selected, we can form, for each value p from the
interval [0, 1], a lottery L(p) in which we get a+ with probability p and a− with
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the remaining probability 1−p. Of course, the larger the probability p of getting
a very good outcome, the better the lottery: if p > p′ then, for the user, the
lottery L(p) is better than the lottery L(p′); we will denote this preference by
L(p) ≻ L(p′).

To �nd a numerical value u(a) corresponding to an alternative a, we need
to compare a with lotteries L(p) corresponding to di�erent values p ∈ [0, 1]. For
each p:

� either a is better (a ≻ L(p)),
� or the lottery is better (L(p) ≻ a),
� or the alternative has the same value to the user as the lottery; we will denote
this by a ∼ L(p).

When p is small, the lottery L(p) is close to the very bad alternative a− and
is, therefore, worse than a: a ≻ L(p). On the other hand, when p is close to 1,
the lottery L(p) is close to the very good alternative a+ and is, therefore, better
than a: L(p) ≻ a. One can show that there exists a threshold value u(a) that
separates the values p for which a ≻ L(p) from the values p for which L(p) ≻ a:
this value is equal to

u(a) = sup{p : a ≻ L(p)} = inf{p : L(p) ≻ a}.

This threshold value is called the utility of the alternative a.
It can proven that for any set of alternatives a1, . . . , an, if we consider a

lottery in which we get ai with probability pi, then the utility of this lottery is
equal to p1 · u(a1) + . . .+ pn · u(an).

Comment. At �rst glance, this notion may appear to be not very practical:
there are in�nitely many possible values p, so comparing the alternative a with
all these lotteries may take forever. However, this is not an obstacle: we can
�nd the utility value really fast if we use bisection. Namely, we start with the
interval [u, u] = [0, 1] that contains the actual (unknown) value u(a). At each
iteration, we decrease this interval � while making sure that the shrank interval
still contains u(a). Namely, we compute the midpoint ũ of the current interval,
and compare the alternative a with the lottery L(ũ).

� If a is better than L(ũ), this means that u(a) is located in the interval [ũ, u].
� If a is worse than L(ũ), this means that u(a) is located in the interval [u, ũ].

On each iteration, we make one comparison, and the interval becomes twice
narrower. In k iterations, we thus get the interval of width 2−k. We stop when
the width of this interval because smaller than a given accuracy ε. This way, the
midpoint of the resulting interval approximates u(a) with accuracy ε/2. So, in 6
iteration, we reach accuracy 1%, and in 9 iterations, we reach accuracy 0.1%.

Utility is de�ned modulo a strictly increasing linear transformation.

The above de�nition of utility depends on the selection of the two extreme
alternatives a− and a+. If we select a di�erent pair (a′−, a

′
+), then, in general,

we get di�erent numerical values of the utility. It can be proven that the new
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utility values u′(a) can be obtained from the original ones u(a) by a strictly
increasing linear transformation. In precise terms, there exist constants c > 0
and d for which, for every alternative a, we have u′(a) = c · u(a) + d.

Nash's bargaining solution: natural requirements and the resulting

criterion. In the success situations, we start with some starting state, which is
known as the status quo state, in which the participants' utilities form a tuple

s
def
= (s1, . . . , sn). We have the set S of di�erent possible alternative in which

everyone gains, i.e., in which for the resulting utilities u = (u1, . . . , un) we have
ui > si for all i. For each two possible alternatives u and u′, it is also possible,
for each value p ∈ [0, 1], to have a lottery in which we get u with probability p
and u′ with the remaining probability 1− p. As we have mentioned, the utility
of this lottery is equal to p · u + (1 − p) · u′. This is an example of a convex
combination of the two vectors u and u′. Thus, the set S should contain, with
every two vectors, its convex combination � i.e., S should be a convex set. We
need to come up with a group-based preference relation ≻s between the tuples.

Let us list natural requirements. First is what is called Pareto optimality: if
ui > u′

i for all i (we will denote it by u > u′), then we should have u ≻s u′.
Second, the preference relation should only depend on the preferences, it should
not depend on the choice of a− and a+ for each person. In other words, for every
two tuples c = (c1, . . . , cn) with ci > 0 for all i and d = (d1, . . . , dn), if we denote

Tc,d(u)
def
= (c1 · u1 + d1, . . . , cn · un + dn),

then u ≻s u
′ should imply Tc,d(u) ≻Tc,d(s) Tc,d(u

′). Third, preferences should not
depend on how we number the participants. If we swap i and j � we will denote
this transformation by πi,j � then preference should not change, i.e., u ≻s u′,
then πi,j(u) ≻πi,j(s) πi,j(u

′).

Finally, the solution should be fair: equal participants should get equal ben-
e�t. In precise terms, if both the status quo state s and the set S do not change
under the swap, i.e., if πi,j(s) = s and πi,j(S) = S, then for every vector u ∈ S
there should exist a vector u′ which is either better or of the same quality as u
(we will denote it by u′ ⪰s u) for which πi,j(u

′) = u′.

Let us describe these conditions in precise terms.

De�nition 1. Let n > 1 be an integer. A binary relation ⪰ on a set A is called
a total pre-order if it satis�ed the following three conditions for all a, b, and c:

� if a ⪰ b and b ⪰ c, then a ⪰ c (transitivity),

� a ⪰ a (re�exivity), and

� a ⪰ b or b ⪰ a (totality).

Notations. For each such relation:

� if a ⪰ b and b ̸⪰ a, we will denote it by a ≻ b, and

� if a ⪰ b and b ⪰ a, we will denote it by a ∼ b.
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De�nition 2. Let n > 1 be an integer. We say that we have a preference relation
if for every vector s ∈ IRn, we have total pre-order relation ⪯s on the set of all
tuples x for which x > s. We say that a preference relation is:

� Pareto-optimal if u > u implies u ≻ u′;
� scale-invariant if for every two tuples c = (c1, . . . , cn) with ci > 0 for all

i and d = (d1, . . . , dn), u ⪰s u′ implies Tc,d(u) ⪰Tc,d(s) Tc,d(u
′), where we

denoted Tc,d(u)
def
= (c1 · u1 + d1, . . . , cn · un + dn);

� anonymous if for every i and j, u ⪰s u′ implies πi,j(u) ⪰πi,j(s) πi,j(u
′),

where πi,j swaps elements ui and uj in a vector; and
� fair if for every vector s and for every convex set S all of whose elements x

satisfy the condition x > s, once πi,j(s) = s and πi,j(S) = S, then for every
vector u ∈ S there should exist a vector u′ which is either better or of the
same quality as u (we will denote it by u′ ⪰s u) for which πi,j(u

′) = u′.

Proposition 1. For every n, for every preference relation ⪰s, the following two
conditions are equivalent:

� the preference relation is Pareto-optimal, scale-invariant, anonymous, and
fair;

� the preference relation has Nash's form

u ⪰s u
′ ↔

n∏
i=1

Ui ≥
n∏

i=1

U ′
i ,

where we denoted Ui
def
= ui − si and U ′

i
def
= u′

i − si.

Comment. In our proof, we will show that we do not actually need the fairness
condition: in this case, it follows from the other three conditions. However, we
keep this reasonable condition in the de�nition, since, as we show later, in the
crisis case, it does not automatically follow from the other conditions.

3 Can a Similar Approach Find a Fair Way to Share a

Crisis? Unfortunately, No

Discussion. In case of a crisis, when we can no longer maintain the status quo
level, fairness means that everyone should contribute, i.e., that we only consider
vectors x for which ui < si for all i. In this case, it is reasonable to make similar
requirements about preferences as in the case of success � Pareto-optimality,
scale-invariance, etc. Unfortunately, in this case, it is not possible to satisfy all
these four conditions.

De�nition 3. Let n > 1 be an integer. We say that we have a crisis-related
preference relation if for every vector s ∈ IRn, we have total pre-order relation
⪯s on the set of all tuples xi for which xi < si for all i.
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Proposition 2. No crisis-related preferences relation is Pareto-optimal, scale-
invariant, anonymous, and fair.

Comment. As we can see from the proof, if we do not impose the fairness con-
dition, then the smaller the product of losses si − ui, the better. In this case,
there is no best outcome, but we can get as close to the best if we let at least
one participant to keep almost everything, i.e., to have ui ≈ si � which others
will su�er. This is clearly not a fair solution.

4 So What Is a Fair Way to Share a Crisis?

Discussion. The negative result from the previous section shows that we cannot
come up with a fair solution if all we know is the current state � the status quo
state s. So, to come up with a fair solution, a natural idea is to also take into
account the state s′ at some previous moment of time.

So, we need a mapping � or maybe several possible mappings � that will,
given two vectors s and s′, compute the reduced-gain vector u, with ui < si.
Similarly to the case of sharing a gain, it makes sense to require scale-invariance.
Thus, we arrive at the following de�nition.

De�nition 4. By crisis-related decision function, we mean a continuous function
F (s, s′) that transforms pair of tuples into a new tuple s′′ for which s′′ ≤ s. We
say that the decision function is:

� scale-invariant if for every two tuples c > 0 and d, s′′ = F (s, s′) implies
Tc,d(s

′′) = F (Tc,d(s), Tc,d(s
′));

� anonymous if for every i and j, s′′ = F (s, s′) implies

πi,j(s
′′) = F (πi,j(s), πi,j(s

′)).

Proposition 3. For each crisis-related decision function F (s, s′), the following
two conditions are equivalent to each other:

� the function F (s, s′) is scale-invariant and anonymous, and
� there exist values α+ ≥ 0 and α− ≥ 0 for which, for all s and s′, the

components of the tuple s′′ = F (s, s′) have the following form: s′′i = si−α+ ·
(si − s′i) when si ≤ s′i and s′′i = si − α− · (s′i − si) when s′i ≤ si.

Discussion.

� When for all i, we have s′i ≤ si, then we only need to use the parameter
α+. The smaller α+, the better. Thus, in this case, Proposition 3 uniquely
determines the optimal strategy: we need to select the smallest possible
value α+.

� Similarly, when for all i, we have s′i ≤ si, then we only need to use the
parameter α−. The smaller α−, the better. Thus, in this case, Proposition
3 uniquely determines the optimal strategy: we need to select the smallest
possible value α−.
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� In the general case, when for some i, we have s′i < si while for other indices
j, we have sj < s′j , we have a whole family of possible solutions: namely, a
1-D family corresponding to Pareto-optimal solutions, i.e., in this case, pairs
(α+, α−) of values that cannot be both reduced.

5 Proofs

Proof of Proposition 1.

1◦. It is easy to see that the Nash's preference relation satis�es the �rst three
conditions. To get the fourth condition, it is su�cient to take the vector u′ =
0.5 ·u+0.5 ·πi,j(u), i.e., a vector in which we replace both values ui and uj with
their arithmetic average. Indeed, in this case, we keep all the other terms in the
product intact and replace the product Ui · Uj with the value U ′

i · U ′
j , where

U ′
i = U ′

j =
Ui + Uj

2
,

and one can show that (
Ui + Uj

2

)2

≥ Ui · Uj :

indeed, the di�erence between the left-hand side and the right-hand side is equal
to (

Ui − Uj

2

)2

≥ 0.

So, to complete the proof of Proposition 1, it is su�cient to prove that every
preference relation that satis�es the �rst three conditions has the Nash's form.

2◦. Let us show that because of scale-invariance, we can reduce the family of total
pre-orders to a single total pre-order. Indeed, for ci = 1 for all i and d = −s,
scale-invariance implies that u ⪰s u′ if and only if U ⪰0 U ′, where we denoted
U = u− s and U ′ = u′ − s.

3◦. Let us now prove that for every U , we have πi,j(U) ∼0 U .
Indeed, since the relation ∼0 is total, we have either πi,j(U) ∼0 U , or

πi,j(U) ≻0 U , or U ≻0 πi,j(U).

� In the second case, anonymity would lead to πi,j(πi,j(U)) ≻0 πi,j(U), i.e., to
U ≻0 πi,j(U), which contradicts to πi,j(U) ≻0 U .

� In the third case, anonymity would lead to πi,j(U) ≻0 πi,j(πi,j(U)), i.e., to
πi,j(U) ≻0 U , which contradicts to U ≻0 πi,j(U).

Thus, the only remaining option is πi,j(U) ∼0 U .

4◦. Let us now prove that for every vector U and for all i and j, U is equivalent to
a vector U ′ in which both components Ui and Uj are replaced by their geometric
mean

√
Ui · Uj .
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Indeed, due to Part 3 of this proof, we have

(. . . ,
√

Ui, . . . ,
√

Uj , . . .) ∼0 (. . . ,
√

Uj , . . . ,
√

Ui, . . .).

Due to scale-invariance for d = 0, ci =
√
Ui, cj =

√
Uj , and ck = 1 for all other

k, we indeed conclude that

(. . . , Ui, . . . , Uj , . . .) ∼0 (. . . ,
√

Ui · Uj , . . . ,
√
Ui · Uj , . . .).

5◦. Let us now prove, that every vector U is equivalent to the vector consisting

of n geometric means U
def
= n

√
U1 · . . . · Un.

Indeed, we will use Part 4 of this proof to prove, by induction over i =
0, 1, . . . , n, that for each i, the vector U is equivalent to some vector of the type
(U, . . . , U, U ′

i+1, . . .) in which the �rst i terms are equal to U .
The base case is easy: for i = 0, as the desired vector, we can take the same

vector U .
The induction step is as follows. Let us assume that we have such a repre-

sentation for i:
U ∼0 (U, . . . , U, U ′

i+1, U
′
i+2, . . .).

Then, due to Part 4 of the proof, we have

(U, . . . , U, U ′
i+1, U

′
i+2, U

′
i+3 . . .) ∼0 (U, . . . , U, U, U ′′

i+2, U
′
i+3 . . .)

as long as U ′
i+1 · U ′

i+2 = U · U ′′
i+2. So this equivalence holds for

U ′′
i+1 =

U ′
i+1 · U ′

i+2

U
.

The induction is proven. So, for i = n, we get the desired result.

6◦. So, due to Part 5, every vector U is equivalent to a vector (U, . . . , U), where
U is the n-th root of the product of the values Ui. Thus, every two vectors with
the same product are equivalent to each other. Due to Pareto optimality, if the
product is larger, the vector is better. So indeed, the preference relation that
satis�es the �rst three condition has the Nash's form.

The proposition is proven.

Proof of Proposition 2. Similarly to the proof of Proposition 1, we can prove
that under the �rst three conditions, every tuple U is equivalent to a tuple

(U, . . . , U), where U = n
√
U1 · . . . · Un, except for this time Ui

def
= si − ui. Due

to Pareto optimality, the smaller U , the better. So the only preference relation

that satis�es the �rst three conditions is the relation u ⪰s u
′ ↔ U ≥ U

′
.

To complete the proof, we will show that this preference relation does not
satisfy the fourth condition. Indeed, let us take, s = 0 and

S = {(−x,−(3− x),−1, . . . ,−1) : 0 < x < 3}.
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Both the status quo state and the set S do not change if we swap partici-
pants 1 and 2. For the vector u = (−2,−1,−1, . . . ,−1), we have U = n

√
2.

However, the only outcome which is invariant with respect to the 1-2 swap is

u′ = (−1.5,−1.5,−1, . . . ,−1). For this outcome, U
′
= n

√
1.5 · 1.5 = n

√
2.25 > U .

Thus, here u ≻s u′ � and hence, the preference relation violates the fairness
condition.

The proposition is proven.

Proof of Proposition 3.

1◦. It is easy to show that for each α+ ≥ 0 and α− ≥ 0, the corresponding
function is scale-invariant and anonymous. So, to complete the proof, we need to
show that, vice versa, every scale-invariant anonymous function has the desired
form.

2◦. Due to scale-invariance for ci = and di = −si, s
′′ = F (s, s′) implies that

s′′ − s = F (0, s′ − s), i.e., that s′′ = F (s, s′) = G(s′ − s) + s, where we de-

noted G(U)
def
= F (0, U). Thus, to describe all possible scale-invariant anony-

mous functions F (s, s′), it is su�cient to describe functions G(U) = F (0, U).
Since Tc,0(0) = 0, for this new function, scale-invariance means that for ev-
ery c > 0, if U ′ = G(U), then Tc(U

′) = G(Tc(U)). In other words, we have
Tc(G(U)) = G(Tc(U)).

3◦. When Ui = 0 for some i, then for ci = 2 and cj = 1 for all other j, we have
Tc(U) = U . Thus, scale-invariance implies that Tc(G(U)) = G(U). For the i-th
component of the vector U ′ = G(U), this means U ′

i = 2U ′
i , thus U

′
i = 0.

4◦. For the values i for which Ui ̸= 0, we can use ci = 1/|Ui|. Then, the vector
e

def
= Tc(U) contains only components that are equal to 1, −1, and 0. Let n− be

the number of values equal to −1, n+ equal to the number of values equal to 1,
and n0 be the number of values equal to 0. For every triple N = (n+, n−, n0)
di�erent vectors e corresponding to this case can obtained from each other by
permutation. Thus, due to anonymity:

� all n+ participants i with ei = 1 get the same value ti which we will denote
by α+(N), and

� all n+ participants i with ei = −1 get the same value ti which we will denote
by α−(N), and

By using scale-invariant, we can conclude that the values U ′
i have the desired

form � with the only exception that now, the values α+ and α−, in general,
depends on the vector N . To complete the proof, we need to prove that the
values α+ and α− are the same for al triples N .

5◦. Let us pick the value i for which ei = 1. Let us consider a family of vectors
that are obtained by multiplying all the values Uj (except for Ui) by some value
ε � while Ui remains intact. For all ε > 0, we have the same vector N , so we
have the same formulas for U ′

i � with the coe�cients α+ corresponding to this
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vector N . In the limit, s′′i tends to a vector in which there is only one non-zero
component, i.e., for which the corresponding vector N ′ has the form (1, 0, n−1).

Since the function F (s, s′) is continuous, the value s′′i corresponding to the
limit vector N ′ should be equal to the limit of the values corresponding to N .
For all ε > 0, the value s′′i is the same � corresponding to α+(N). So, in the
limit, this value should remain the same as well. However, for ε > 0, we have
α+(N) corresponding to the original vector N , while in the limit, we have the
value ε(N ′). Thus, for each vector N , the value α(N) is the same as in the case
when only coe�cient is di�erent from 0 � so it does not depend on N .

Similarly, the value α−(N) does not depend on N . The proposition is proven.
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