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Abstract Most information about the world comes from sensors – and from the
results of processing sensor data. In many practical situations – e.g., in biomedi-
cal applications – it is desirable to make sure that the sensors are as “invisible” as
possible, in particular, that they are as small as possible. One way to achieve such
small size is to use ultrathin-layer materials such as graphene. It is known that for
such materials, strain causes electromagnetic effects – which can be used to detect
small strains. Interestingly, it turned out that the same equation describes the rela-
tion between strain and electric effects and between strain and magnetic effects –
although in these two cases, physics is somewhat different. The fact that we get the
same equation in two different physical situations leads to a natural conjecture that
this equation should follow from first principles, without the need to use specific
physical equations. In this paper, we show that this is indeed the case: one of the
main equations of straintronics can be derived from first principles, without using
specific equations of physics.

1 Straintronics: Use of Ultrathin-Layer Strain-Based Electronic
Devices

What is straintronics. One of the main objectives of engineering is to control dif-
ferent systems: mechanical systems, biomedical systems – e.g., that help the heart,
etc. In many such cases – e.g., in many biomedical applications – it is desirable to
make the sensors as “invisible” and convenient as possible. For this purpose, they
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should be made as small as possible. One way to decrease the sensor size is to use
ultrathin-layer materials such as graphene. One of the important properties of such
layers is that for them, strain changes their electromagnetic properties. This can be
used to design sensitive and compact strain sensors. The use of strain-related eletro-
magnetic effects in ultrathin-layer electronic devices is known as straintronics; see,
e.g., [1, 2, 3, 4, 5].

The energy equation of straintronics. One of the main equations of straintronics
describes the free energy of the layer as

E = γ ·P · [n ·divn− (n∇)n], (1)

i.e., in coordinate terms,

E = γ ·∑
i

Pi ·

[
ni ·∑

j
n j, j −∑

j
n j ·ni, j

]
, (2)

where γ is the interaction constant, P is the electric polarization vector (or a similar
vector describing the magnetic field), n is unit vector describing the layer’s orienta-
tion, and ni, j stands for the partial derivative

ni, j
def
=

∂ni

∂x j
.

The formula (2) can be rewritten in a simpler form if we use Einstein notations,
where in a product repeated indices mean summation over this index. In terms of
these notations, the formula (2) takes the following form:

E = γPi[nin j, j −n jni, j]. (3)

Natural question. The equation (1)-(3) is usually derived from the corresponding
physical equations. It was first derived for the relation between strain and electric
effects. It then turned out that the same equation is applicable to the relation between
strain and magnetic effects, although in this case, physical equations are somewhat
different. The fact that the same equation appears in two somewhat different phys-
ical situations leads to a natural conjecture that this equation can be derived from
basic first principles, without the need for specifics physical equations.

What we do in this paper. In this paper, we confirm this natural conjecture by
showing that the above equation can be derived without the need to use specific
physical equations.



Ultrathin-Layer Strain-Based Electronic Devices 3

2 Our derivation

Assumptions that are already implicity used in this equation. Since the material
is ultrathin, even a minor change in the outside environment or in the geometry of
the layer can cause large changes in the layer – it can also easily destroy this layer.
This sensitivity is one of the features that makes these materials appropriate for
sensitive sensors.

Due to the same sensitivity, the vector P describing electromagnetic effect has to
be relatively small – otherwise, if the effect is large, the fragile ultrathin layer will
simply break. Similarly, the derivatives ni, j that describe the non-homogeneity of
the layer’s state should be small: if there is a big difference between the states at the
neighboring parts of the layer, the layer will break.

Since both Pi and ni, j are small, terms which are quadratic (or of higher order) in
terms of these quantities can be safely ignored. So, we can safely assume that the
energy E depends linearly on both Pi and ni, j. In general, such a bilinear dependence
takes the following form:

E = E0 +EiPi +Ei, jni, j +Ei jkPin j,k, (4)

for some coefficients Ei, Ei j, and Ei jk.

When energy is 0. When there is no electromagnetic effect, i.e., when Pi = 0, there
is no corresponding energy accumulated, so E should be 0. For Pi = 0 and E = 0,
the formula (4) has the form

0 = E0 +Ei, jni, j. (5)

This equality should be true for all possible values of ni, j. In particular:

• for ni, j = 0, we conclude that E0 = 0, and
• for ni, j ̸= 0, the fact that the linear function (5) is always equal to 0 means that

all the coefficients are equal to 0, i.e., that Ei, j = 0.

Thus, the formula (4) takes the following simplified form:

E = EiPi +Ei jkPin j,k. (6)

Similarly, if there is no non-homogeneity of the layer, i.e., if the layer is still in
its original state ni, j = 0, there is no energy accumulated, so E should also be 0.
Substituting ni, j = 0 and E = 0 into the formula (6), we get

0 = EiPi. (7)

This formula has to be true for all Pi, so we can conclude that all the coefficients Ei
of the linear form EiPi are equal to 0. Substituting Ei = 0 into the formula (6), we
get a simplified formula

E = Ei jkPjn j,k. (8)
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The values Ei jk depend only on ni. This dependence should be rotation-invariant,
so Ei jk should be an algebraic combination of ni and the unit matrix δi j for which
δii = 1 and δi j = 0 for all i ̸= j. Here, ni is a unit vector, so nini = δi jnin j = 1. Thus,
the only possible combinations are

Ei jk = c1 ·ni ·δ jk + c2 ·n j ·δik + c3 ·nk ·δi j + c4 ·ni ·n j ·nk. (9)

Substituting the expression (9) into the formula (8), we conclude that

E = Pi · [c1nin j, j + c2n jn j,i + c3n jni, j + c4nin j,kn jnk]. (10)

The term n jn j,i is equal to (1/2)(n jn j),i. Since ni is a unit vector, n jn j is a constant:
n jn j = 1. So, the derivative of n jn j is equal to 0. Hence, n jn j,i = n j,kn j = 0 and so,
c2n jn j,i = c4nin j,kn jnk = 0. Thus, the expression (10) takes the following simplified
form:

E = Pi[c1nin j, j + c3n jni, j]. (11)

This is a multi-D effect. Another idea is that this is a multi-D effect, it can be
observed in 2D layers, but not in the 1D case. So, for the 1D case, the energy should
also be equal to 0. The 1-D case means that:

• the electromagnetic effect is 1-D, i.e., P1 ̸= 0 while P2 = . . .= 0, and
• the vector ni only depend on x1, i.e., ni, j = 0 for all j > 1.

In this case, E = 0, P1 ̸= 0, n j, j = n1,1 and n jni, j = n1ni,1. So, the formula (11) takes
the following form:

0 = P1[c1n1n1,1 + c3n1n1,1], (12)

i.e.,
0 = P1(c1 + c3)n1n1,1. (13)

Since P1 ̸= 0, we can divide both sides by P1 and get

0 = (c1 + c3)n1n1,1. (14)

This expression has to be true for all possible values of n1 and n1,1, so we must have

c1 + c3 = 0 and c3 = −c1. Thus, if we denote γ
def
= c1, the formula (11) takes the

desired form
E = γPi[nin j, j −n jni, j]. (3)

Conclusion. So, we have indeed derived the formula (3) without using any specific
physical equations.
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